| 
					
				 | 
			
			
				@@ -0,0 +1,20 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import statistics 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import numpy as np 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from edgetpu.detection.engine import DetectionEngine 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Path to frozen detection graph. This is the actual model that is used for the object detection. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+PATH_TO_CKPT = '/frozen_inference_graph.pb' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Load the edgetpu engine and labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+engine = DetectionEngine(PATH_TO_CKPT) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+frame = np.zeros((300,300,3), np.uint8) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+flattened_frame = np.expand_dims(frame, axis=0).flatten() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+detection_times = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+for x in range(0, 1000): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    detection_times.append(engine.get_inference_time()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+print("Average inference time: " + str(statistics.mean(detection_times))) 
			 |