|
@@ -0,0 +1,20 @@
|
|
|
|
+import statistics
|
|
|
|
+import numpy as np
|
|
|
|
+from edgetpu.detection.engine import DetectionEngine
|
|
|
|
+
|
|
|
|
+# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
|
|
+PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
|
|
+
|
|
|
|
+# Load the edgetpu engine and labels
|
|
|
|
+engine = DetectionEngine(PATH_TO_CKPT)
|
|
|
|
+
|
|
|
|
+frame = np.zeros((300,300,3), np.uint8)
|
|
|
|
+flattened_frame = np.expand_dims(frame, axis=0).flatten()
|
|
|
|
+
|
|
|
|
+detection_times = []
|
|
|
|
+
|
|
|
|
+for x in range(0, 1000):
|
|
|
|
+ objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3)
|
|
|
|
+ detection_times.append(engine.get_inference_time())
|
|
|
|
+
|
|
|
|
+print("Average inference time: " + str(statistics.mean(detection_times)))
|