1234567891011121314151617181920 |
- import statistics
- import numpy as np
- from edgetpu.detection.engine import DetectionEngine
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
- PATH_TO_CKPT = '/frozen_inference_graph.pb'
- # Load the edgetpu engine and labels
- engine = DetectionEngine(PATH_TO_CKPT)
- frame = np.zeros((300,300,3), np.uint8)
- flattened_frame = np.expand_dims(frame, axis=0).flatten()
- detection_times = []
- for x in range(0, 1000):
- objects = engine.DetectWithInputTensor(flattened_frame, threshold=0.1, top_k=3)
- detection_times.append(engine.get_inference_time())
- print("Average inference time: " + str(statistics.mean(detection_times)))
|