detect_objects.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. import os
  2. import cv2
  3. import imutils
  4. import time
  5. import datetime
  6. import ctypes
  7. import logging
  8. import multiprocessing as mp
  9. import threading
  10. from contextlib import closing
  11. import numpy as np
  12. import tensorflow as tf
  13. from object_detection.utils import label_map_util
  14. from object_detection.utils import visualization_utils as vis_util
  15. from flask import Flask, Response, make_response
  16. RTSP_URL = os.getenv('RTSP_URL')
  17. # Path to frozen detection graph. This is the actual model that is used for the object detection.
  18. PATH_TO_CKPT = '/frozen_inference_graph.pb'
  19. # List of the strings that is used to add correct label for each box.
  20. PATH_TO_LABELS = '/label_map.pbtext'
  21. # TODO: make dynamic?
  22. NUM_CLASSES = 90
  23. # REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
  24. # REGIONS = "400,350,250,50"
  25. REGIONS = os.getenv('REGIONS')
  26. DETECTED_OBJECTS = []
  27. # Loading label map
  28. label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
  29. categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
  30. use_display_name=True)
  31. category_index = label_map_util.create_category_index(categories)
  32. def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
  33. # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  34. image_np_expanded = np.expand_dims(cropped_frame, axis=0)
  35. image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
  36. # Each box represents a part of the image where a particular object was detected.
  37. boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
  38. # Each score represent how level of confidence for each of the objects.
  39. # Score is shown on the result image, together with the class label.
  40. scores = detection_graph.get_tensor_by_name('detection_scores:0')
  41. classes = detection_graph.get_tensor_by_name('detection_classes:0')
  42. num_detections = detection_graph.get_tensor_by_name('num_detections:0')
  43. # Actual detection.
  44. (boxes, scores, classes, num_detections) = sess.run(
  45. [boxes, scores, classes, num_detections],
  46. feed_dict={image_tensor: image_np_expanded})
  47. # build an array of detected objects
  48. objects = []
  49. for index, value in enumerate(classes[0]):
  50. score = scores[0, index]
  51. if score > 0.1:
  52. box = boxes[0, index].tolist()
  53. box[0] = (box[0] * region_size) + region_y_offset
  54. box[1] = (box[1] * region_size) + region_x_offset
  55. box[2] = (box[2] * region_size) + region_y_offset
  56. box[3] = (box[3] * region_size) + region_x_offset
  57. objects += [value, scores[0, index]] + box
  58. # only get the first 10 objects
  59. if len(objects) == 60:
  60. break
  61. return objects
  62. class ObjectParser(threading.Thread):
  63. def __init__(self, object_arrays):
  64. threading.Thread.__init__(self)
  65. self._object_arrays = object_arrays
  66. def run(self):
  67. global DETECTED_OBJECTS
  68. while True:
  69. detected_objects = []
  70. for object_array in self._object_arrays:
  71. object_index = 0
  72. while(object_index < 60 and object_array[object_index] > 0):
  73. object_class = object_array[object_index]
  74. detected_objects.append({
  75. 'name': str(category_index.get(object_class).get('name')),
  76. 'score': object_array[object_index+1],
  77. 'ymin': int(object_array[object_index+2]),
  78. 'xmin': int(object_array[object_index+3]),
  79. 'ymax': int(object_array[object_index+4]),
  80. 'xmax': int(object_array[object_index+5])
  81. })
  82. object_index += 6
  83. DETECTED_OBJECTS = detected_objects
  84. time.sleep(0.01)
  85. def main():
  86. # Parse selected regions
  87. regions = []
  88. for region_string in REGIONS.split(':'):
  89. region_parts = region_string.split(',')
  90. regions.append({
  91. 'size': int(region_parts[0]),
  92. 'x_offset': int(region_parts[1]),
  93. 'y_offset': int(region_parts[2]),
  94. 'min_object_size': int(region_parts[3])
  95. })
  96. # capture a single frame and check the frame shape so the correct array
  97. # size can be allocated in memory
  98. video = cv2.VideoCapture(RTSP_URL)
  99. ret, frame = video.read()
  100. if ret:
  101. frame_shape = frame.shape
  102. else:
  103. print("Unable to capture video stream")
  104. exit(1)
  105. video.release()
  106. shared_memory_objects = []
  107. for region in regions:
  108. shared_memory_objects.append({
  109. # shared value for signaling to the capture process that we are ready for the next frame
  110. # (1 for ready 0 for not ready)
  111. 'ready_for_frame': mp.Value('i', 1),
  112. # shared value for motion detection signal (1 for motion 0 for no motion)
  113. 'motion_detected': mp.Value('i', 0),
  114. # create shared array for storing 10 detected objects
  115. # note: this must be a double even though the value you are storing
  116. # is a float. otherwise it stops updating the value in shared
  117. # memory. probably something to do with the size of the memory block
  118. 'output_array': mp.Array(ctypes.c_double, 6*10)
  119. })
  120. # compute the flattened array length from the array shape
  121. flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
  122. # create shared array for storing the full frame image data
  123. shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
  124. # create shared value for storing the frame_time
  125. shared_frame_time = mp.Value('d', 0.0)
  126. # shape current frame so it can be treated as an image
  127. frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
  128. capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, [obj['ready_for_frame'] for obj in shared_memory_objects], frame_shape))
  129. capture_process.daemon = True
  130. detection_processes = []
  131. for index, region in enumerate(regions):
  132. detection_process = mp.Process(target=process_frames, args=(shared_arr,
  133. shared_memory_objects[index]['output_array'],
  134. shared_frame_time,
  135. shared_memory_objects[index]['motion_detected'],
  136. frame_shape,
  137. region['size'], region['x_offset'], region['y_offset']))
  138. detection_process.daemon = True
  139. detection_processes.append(detection_process)
  140. motion_processes = []
  141. for index, region in enumerate(regions):
  142. motion_process = mp.Process(target=detect_motion, args=(shared_arr,
  143. shared_frame_time,
  144. shared_memory_objects[index]['ready_for_frame'],
  145. shared_memory_objects[index]['motion_detected'],
  146. frame_shape,
  147. region['size'], region['x_offset'], region['y_offset'],
  148. region['min_object_size']))
  149. motion_process.daemon = True
  150. motion_processes.append(motion_process)
  151. object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
  152. object_parser.start()
  153. capture_process.start()
  154. print("capture_process pid ", capture_process.pid)
  155. for detection_process in detection_processes:
  156. detection_process.start()
  157. print("detection_process pid ", detection_process.pid)
  158. for motion_process in motion_processes:
  159. motion_process.start()
  160. print("motion_process pid ", motion_process.pid)
  161. app = Flask(__name__)
  162. @app.route('/')
  163. def index():
  164. # return a multipart response
  165. return Response(imagestream(),
  166. mimetype='multipart/x-mixed-replace; boundary=frame')
  167. def imagestream():
  168. global DETECTED_OBJECTS
  169. while True:
  170. # max out at 5 FPS
  171. time.sleep(0.2)
  172. # make a copy of the current detected objects
  173. detected_objects = DETECTED_OBJECTS.copy()
  174. # make a copy of the current frame
  175. frame = frame_arr.copy()
  176. # convert to RGB for drawing
  177. frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
  178. # draw the bounding boxes on the screen
  179. for obj in detected_objects:
  180. vis_util.draw_bounding_box_on_image_array(frame,
  181. obj['ymin'],
  182. obj['xmin'],
  183. obj['ymax'],
  184. obj['xmax'],
  185. color='red',
  186. thickness=2,
  187. display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
  188. use_normalized_coordinates=False)
  189. for region in regions:
  190. cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
  191. (region['x_offset']+region['size'], region['y_offset']+region['size']),
  192. (255,255,255), 2)
  193. motion_status = 'No Motion'
  194. if any(obj['motion_detected'].value == 1 for obj in shared_memory_objects):
  195. motion_status = 'Motion'
  196. cv2.putText(frame, motion_status, (10, 20),
  197. cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
  198. # convert back to BGR
  199. frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
  200. # encode the image into a jpg
  201. ret, jpg = cv2.imencode('.jpg', frame)
  202. yield (b'--frame\r\n'
  203. b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
  204. app.run(host='0.0.0.0', debug=False)
  205. capture_process.join()
  206. for detection_process in detection_processes:
  207. detection_process.join()
  208. for motion_process in motion_processes:
  209. motion_process.join()
  210. object_parser.join()
  211. # convert shared memory array into numpy array
  212. def tonumpyarray(mp_arr):
  213. return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
  214. # fetch the frames as fast a possible, only decoding the frames when the
  215. # detection_process has consumed the current frame
  216. def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
  217. # convert shared memory array into numpy and shape into image array
  218. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  219. # start the video capture
  220. video = cv2.VideoCapture(RTSP_URL)
  221. # keep the buffer small so we minimize old data
  222. video.set(cv2.CAP_PROP_BUFFERSIZE,1)
  223. while True:
  224. # grab the frame, but dont decode it yet
  225. ret = video.grab()
  226. # snapshot the time the frame was grabbed
  227. frame_time = datetime.datetime.now()
  228. if ret:
  229. # if the anyone is ready for the next frame decode it
  230. # otherwise skip this frame and move onto the next one
  231. if any(flag.value == 1 for flag in ready_for_frame_flags):
  232. # go ahead and decode the current frame
  233. ret, frame = video.retrieve()
  234. if ret:
  235. arr[:] = frame
  236. shared_frame_time.value = frame_time.timestamp()
  237. # signal to the detection_processes by setting the shared_frame_time
  238. for flag in ready_for_frame_flags:
  239. flag.value = 0
  240. else:
  241. # sleep a little to reduce CPU usage
  242. time.sleep(0.01)
  243. video.release()
  244. # do the actual object detection
  245. def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
  246. # shape shared input array into frame for processing
  247. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  248. # Load a (frozen) Tensorflow model into memory before the processing loop
  249. detection_graph = tf.Graph()
  250. with detection_graph.as_default():
  251. od_graph_def = tf.GraphDef()
  252. with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
  253. serialized_graph = fid.read()
  254. od_graph_def.ParseFromString(serialized_graph)
  255. tf.import_graph_def(od_graph_def, name='')
  256. sess = tf.Session(graph=detection_graph)
  257. no_frames_available = -1
  258. frame_time = 0.0
  259. while True:
  260. now = datetime.datetime.now().timestamp()
  261. # if there is no motion detected
  262. if shared_motion.value == 0:
  263. time.sleep(0.01)
  264. continue
  265. # if there isnt a new frame ready for processing
  266. if shared_frame_time.value == frame_time:
  267. # save the first time there were no frames available
  268. if no_frames_available == -1:
  269. no_frames_available = now
  270. # if there havent been any frames available in 30 seconds,
  271. # sleep to avoid using so much cpu if the camera feed is down
  272. if no_frames_available > 0 and (now - no_frames_available) > 30:
  273. time.sleep(1)
  274. print("sleeping because no frames have been available in a while")
  275. else:
  276. # rest a little bit to avoid maxing out the CPU
  277. time.sleep(0.01)
  278. continue
  279. # we got a valid frame, so reset the timer
  280. no_frames_available = -1
  281. # if the frame is more than 0.5 second old, ignore it
  282. if (now - shared_frame_time.value) > 0.5:
  283. # rest a little bit to avoid maxing out the CPU
  284. time.sleep(0.01)
  285. continue
  286. # make a copy of the cropped frame
  287. cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
  288. frame_time = shared_frame_time.value
  289. # convert to RGB
  290. cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
  291. # do the object detection
  292. objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
  293. # copy the detected objects to the output array, filling the array when needed
  294. shared_output_arr[:] = objects + [0.0] * (60-len(objects))
  295. # do the actual object detection
  296. def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
  297. # shape shared input array into frame for processing
  298. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  299. no_frames_available = -1
  300. avg_frame = None
  301. last_motion = -1
  302. frame_time = 0.0
  303. while True:
  304. now = datetime.datetime.now().timestamp()
  305. # if it has been 30 seconds since the last motion, clear the flag
  306. if last_motion > 0 and (now - last_motion) > 30:
  307. last_motion = -1
  308. shared_motion.value = 0
  309. # if there isnt a frame ready for processing
  310. if shared_frame_time.value == frame_time:
  311. # save the first time there were no frames available
  312. if no_frames_available == -1:
  313. no_frames_available = now
  314. # if there havent been any frames available in 30 seconds,
  315. # sleep to avoid using so much cpu if the camera feed is down
  316. if no_frames_available > 0 and (now - no_frames_available) > 30:
  317. time.sleep(1)
  318. print("sleeping because no frames have been available in a while")
  319. else:
  320. # rest a little bit to avoid maxing out the CPU
  321. time.sleep(0.01)
  322. if ready_for_frame.value == 0:
  323. ready_for_frame.value = 1
  324. continue
  325. # we got a valid frame, so reset the timer
  326. no_frames_available = -1
  327. # if the frame is more than 0.5 second old, discard it
  328. if (now - shared_frame_time.value) > 0.5:
  329. # signal that we need a new frame
  330. ready_for_frame.value = 1
  331. # rest a little bit to avoid maxing out the CPU
  332. time.sleep(0.01)
  333. continue
  334. # make a copy of the cropped frame
  335. cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
  336. frame_time = shared_frame_time.value
  337. # signal that the frame has been used so a new one will be ready
  338. ready_for_frame.value = 1
  339. # convert to grayscale
  340. gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
  341. # apply gaussian blur
  342. gray = cv2.GaussianBlur(gray, (21, 21), 0)
  343. if avg_frame is None:
  344. avg_frame = gray.copy().astype("float")
  345. continue
  346. # look at the delta from the avg_frame
  347. cv2.accumulateWeighted(gray, avg_frame, 0.5)
  348. frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
  349. thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
  350. # dilate the thresholded image to fill in holes, then find contours
  351. # on thresholded image
  352. thresh = cv2.dilate(thresh, None, iterations=2)
  353. cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
  354. cv2.CHAIN_APPROX_SIMPLE)
  355. cnts = imutils.grab_contours(cnts)
  356. # loop over the contours
  357. for c in cnts:
  358. # if the contour is big enough report motion
  359. if cv2.contourArea(c) > min_motion_area:
  360. last_motion = now
  361. shared_motion.value = 1
  362. break
  363. if __name__ == '__main__':
  364. mp.freeze_support()
  365. main()