123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- import datetime
- import time
- import cv2
- import threading
- import numpy as np
- from edgetpu.detection.engine import DetectionEngine
- from . util import tonumpyarray
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
- PATH_TO_CKPT = '/frozen_inference_graph.pb'
- # List of the strings that is used to add correct label for each box.
- PATH_TO_LABELS = '/label_map.pbtext'
- # Function to read labels from text files.
- def ReadLabelFile(file_path):
- with open(file_path, 'r') as f:
- lines = f.readlines()
- ret = {}
- for line in lines:
- pair = line.strip().split(maxsplit=1)
- ret[int(pair[0])] = pair[1].strip()
- return ret
- class PreppedQueueProcessor(threading.Thread):
- def __init__(self, cameras, prepped_frame_queue):
- threading.Thread.__init__(self)
- self.cameras = cameras
- self.prepped_frame_queue = prepped_frame_queue
-
- # Load the edgetpu engine and labels
- self.engine = DetectionEngine(PATH_TO_CKPT)
- self.labels = ReadLabelFile(PATH_TO_LABELS)
- def run(self):
- # process queue...
- while True:
- frame = self.prepped_frame_queue.get()
- # Actual detection.
- objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=frame['region_threshold'], top_k=3)
- # parse and pass detected objects back to the camera
- parsed_objects = []
- for obj in objects:
- box = obj.bounding_box.flatten().tolist()
- parsed_objects.append({
- 'frame_time': frame['frame_time'],
- 'name': str(self.labels[obj.label_id]),
- 'score': float(obj.score),
- 'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
- 'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
- 'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
- 'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
- })
- self.cameras[frame['camera_name']].add_objects(parsed_objects)
- # should this be a region class?
- class FramePrepper(threading.Thread):
- def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
- frame_lock,
- region_size, region_x_offset, region_y_offset, region_threshold,
- prepped_frame_queue):
- threading.Thread.__init__(self)
- self.camera_name = camera_name
- self.shared_frame = shared_frame
- self.frame_time = frame_time
- self.frame_ready = frame_ready
- self.frame_lock = frame_lock
- self.region_size = region_size
- self.region_x_offset = region_x_offset
- self.region_y_offset = region_y_offset
- self.region_threshold = region_threshold
- self.prepped_frame_queue = prepped_frame_queue
- def run(self):
- frame_time = 0.0
- while True:
- now = datetime.datetime.now().timestamp()
- with self.frame_ready:
- # if there isnt a frame ready for processing or it is old, wait for a new frame
- if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
- self.frame_ready.wait()
-
- # make a copy of the cropped frame
- with self.frame_lock:
- cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
- frame_time = self.frame_time.value
-
- # convert to RGB
- #cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
- # Resize to 300x300 if needed
- if cropped_frame.shape != (300, 300, 3):
- cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
- # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
- frame_expanded = np.expand_dims(cropped_frame, axis=0)
- # add the frame to the queue
- if not self.prepped_frame_queue.full():
- self.prepped_frame_queue.put({
- 'camera_name': self.camera_name,
- 'frame_time': frame_time,
- 'frame': frame_expanded.flatten().copy(),
- 'region_size': self.region_size,
- 'region_threshold': self.region_threshold,
- 'region_x_offset': self.region_x_offset,
- 'region_y_offset': self.region_y_offset
- })
- else:
- print("queue full. moving on")
|