object_detection.py 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. import datetime
  2. import time
  3. import cv2
  4. import threading
  5. import numpy as np
  6. from edgetpu.detection.engine import DetectionEngine
  7. from . util import tonumpyarray
  8. # Path to frozen detection graph. This is the actual model that is used for the object detection.
  9. PATH_TO_CKPT = '/frozen_inference_graph.pb'
  10. # List of the strings that is used to add correct label for each box.
  11. PATH_TO_LABELS = '/label_map.pbtext'
  12. # Function to read labels from text files.
  13. def ReadLabelFile(file_path):
  14. with open(file_path, 'r') as f:
  15. lines = f.readlines()
  16. ret = {}
  17. for line in lines:
  18. pair = line.strip().split(maxsplit=1)
  19. ret[int(pair[0])] = pair[1].strip()
  20. return ret
  21. class PreppedQueueProcessor(threading.Thread):
  22. def __init__(self, cameras, prepped_frame_queue):
  23. threading.Thread.__init__(self)
  24. self.cameras = cameras
  25. self.prepped_frame_queue = prepped_frame_queue
  26. # Load the edgetpu engine and labels
  27. self.engine = DetectionEngine(PATH_TO_CKPT)
  28. self.labels = ReadLabelFile(PATH_TO_LABELS)
  29. def run(self):
  30. # process queue...
  31. while True:
  32. frame = self.prepped_frame_queue.get()
  33. # Actual detection.
  34. objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=frame['region_threshold'], top_k=3)
  35. # parse and pass detected objects back to the camera
  36. parsed_objects = []
  37. for obj in objects:
  38. box = obj.bounding_box.flatten().tolist()
  39. parsed_objects.append({
  40. 'frame_time': frame['frame_time'],
  41. 'name': str(self.labels[obj.label_id]),
  42. 'score': float(obj.score),
  43. 'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
  44. 'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
  45. 'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
  46. 'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
  47. })
  48. self.cameras[frame['camera_name']].add_objects(parsed_objects)
  49. # should this be a region class?
  50. class FramePrepper(threading.Thread):
  51. def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
  52. frame_lock,
  53. region_size, region_x_offset, region_y_offset, region_threshold,
  54. prepped_frame_queue):
  55. threading.Thread.__init__(self)
  56. self.camera_name = camera_name
  57. self.shared_frame = shared_frame
  58. self.frame_time = frame_time
  59. self.frame_ready = frame_ready
  60. self.frame_lock = frame_lock
  61. self.region_size = region_size
  62. self.region_x_offset = region_x_offset
  63. self.region_y_offset = region_y_offset
  64. self.region_threshold = region_threshold
  65. self.prepped_frame_queue = prepped_frame_queue
  66. def run(self):
  67. frame_time = 0.0
  68. while True:
  69. now = datetime.datetime.now().timestamp()
  70. with self.frame_ready:
  71. # if there isnt a frame ready for processing or it is old, wait for a new frame
  72. if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
  73. self.frame_ready.wait()
  74. # make a copy of the cropped frame
  75. with self.frame_lock:
  76. cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
  77. frame_time = self.frame_time.value
  78. # convert to RGB
  79. #cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
  80. # Resize to 300x300 if needed
  81. if cropped_frame.shape != (300, 300, 3):
  82. cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
  83. # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
  84. frame_expanded = np.expand_dims(cropped_frame, axis=0)
  85. # add the frame to the queue
  86. if not self.prepped_frame_queue.full():
  87. self.prepped_frame_queue.put({
  88. 'camera_name': self.camera_name,
  89. 'frame_time': frame_time,
  90. 'frame': frame_expanded.flatten().copy(),
  91. 'region_size': self.region_size,
  92. 'region_threshold': self.region_threshold,
  93. 'region_x_offset': self.region_x_offset,
  94. 'region_y_offset': self.region_y_offset
  95. })
  96. else:
  97. print("queue full. moving on")