|
@@ -1,5 +1,6 @@
|
|
|
import os
|
|
|
import cv2
|
|
|
+import imutils
|
|
|
import time
|
|
|
import datetime
|
|
|
import ctypes
|
|
@@ -24,8 +25,8 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
|
|
# TODO: make dynamic?
|
|
|
NUM_CLASSES = 90
|
|
|
|
|
|
-#REGIONS = "600,0,380:600,600,380:600,1200,380"
|
|
|
-REGIONS = os.getenv('REGIONS')
|
|
|
+REGIONS = "300,0,0:300,300,0:300,600,0"
|
|
|
+#REGIONS = os.getenv('REGIONS')
|
|
|
|
|
|
DETECTED_OBJECTS = []
|
|
|
|
|
@@ -152,62 +153,77 @@ def main():
|
|
|
detection_process.daemon = True
|
|
|
detection_processes.append(detection_process)
|
|
|
|
|
|
+ motion_processes = []
|
|
|
+ for index, region in enumerate(regions):
|
|
|
+ motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
|
|
+ shared_memory_objects[index]['frame_time'],
|
|
|
+ shared_memory_objects[index]['motion_detected'],
|
|
|
+ frame_shape,
|
|
|
+ region['size'], region['x_offset'], region['y_offset']))
|
|
|
+ motion_process.daemon = True
|
|
|
+ motion_processes.append(motion_process)
|
|
|
+
|
|
|
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
|
|
- object_parser.start()
|
|
|
+ # object_parser.start()
|
|
|
|
|
|
capture_process.start()
|
|
|
print("capture_process pid ", capture_process.pid)
|
|
|
- for detection_process in detection_processes:
|
|
|
- detection_process.start()
|
|
|
- print("detection_process pid ", detection_process.pid)
|
|
|
-
|
|
|
- app = Flask(__name__)
|
|
|
-
|
|
|
- @app.route('/')
|
|
|
- def index():
|
|
|
- # return a multipart response
|
|
|
- return Response(imagestream(),
|
|
|
- mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
- def imagestream():
|
|
|
- global DETECTED_OBJECTS
|
|
|
- while True:
|
|
|
- # max out at 5 FPS
|
|
|
- time.sleep(0.2)
|
|
|
- # make a copy of the current detected objects
|
|
|
- detected_objects = DETECTED_OBJECTS.copy()
|
|
|
- # make a copy of the current frame
|
|
|
- frame = frame_arr.copy()
|
|
|
- # convert to RGB for drawing
|
|
|
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
- # draw the bounding boxes on the screen
|
|
|
- for obj in DETECTED_OBJECTS:
|
|
|
- vis_util.draw_bounding_box_on_image_array(frame,
|
|
|
- obj['ymin'],
|
|
|
- obj['xmin'],
|
|
|
- obj['ymax'],
|
|
|
- obj['xmax'],
|
|
|
- color='red',
|
|
|
- thickness=2,
|
|
|
- display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
|
- use_normalized_coordinates=False)
|
|
|
-
|
|
|
- for region in regions:
|
|
|
- cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
- (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
- (255,255,255), 2)
|
|
|
- # convert back to BGR
|
|
|
- frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
- # encode the image into a jpg
|
|
|
- ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
- yield (b'--frame\r\n'
|
|
|
- b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
-
|
|
|
- app.run(host='0.0.0.0', debug=False)
|
|
|
+ # for detection_process in detection_processes:
|
|
|
+ # detection_process.start()
|
|
|
+ # print("detection_process pid ", detection_process.pid)
|
|
|
+ for motion_process in motion_processes:
|
|
|
+ motion_process.start()
|
|
|
+ print("motion_process pid ", motion_process.pid)
|
|
|
+
|
|
|
+ # app = Flask(__name__)
|
|
|
+
|
|
|
+ # @app.route('/')
|
|
|
+ # def index():
|
|
|
+ # # return a multipart response
|
|
|
+ # return Response(imagestream(),
|
|
|
+ # mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
+ # def imagestream():
|
|
|
+ # global DETECTED_OBJECTS
|
|
|
+ # while True:
|
|
|
+ # # max out at 5 FPS
|
|
|
+ # time.sleep(0.2)
|
|
|
+ # # make a copy of the current detected objects
|
|
|
+ # detected_objects = DETECTED_OBJECTS.copy()
|
|
|
+ # # make a copy of the current frame
|
|
|
+ # frame = frame_arr.copy()
|
|
|
+ # # convert to RGB for drawing
|
|
|
+ # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ # # draw the bounding boxes on the screen
|
|
|
+ # for obj in DETECTED_OBJECTS:
|
|
|
+ # vis_util.draw_bounding_box_on_image_array(frame,
|
|
|
+ # obj['ymin'],
|
|
|
+ # obj['xmin'],
|
|
|
+ # obj['ymax'],
|
|
|
+ # obj['xmax'],
|
|
|
+ # color='red',
|
|
|
+ # thickness=2,
|
|
|
+ # display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
|
+ # use_normalized_coordinates=False)
|
|
|
+
|
|
|
+ # for region in regions:
|
|
|
+ # cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
+ # (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
+ # (255,255,255), 2)
|
|
|
+ # # convert back to BGR
|
|
|
+ # frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
+ # # encode the image into a jpg
|
|
|
+ # ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
+ # yield (b'--frame\r\n'
|
|
|
+ # b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
+
|
|
|
+ # app.run(host='0.0.0.0', debug=False)
|
|
|
|
|
|
capture_process.join()
|
|
|
- for detection_process in detection_processes:
|
|
|
- detection_process.join()
|
|
|
- object_parser.join()
|
|
|
+ # for detection_process in detection_processes:
|
|
|
+ # detection_process.join()
|
|
|
+ for motion_process in motion_processes:
|
|
|
+ motion_process.join()
|
|
|
+ # object_parser.join()
|
|
|
|
|
|
# convert shared memory array into numpy array
|
|
|
def tonumpyarray(mp_arr):
|
|
@@ -307,6 +323,91 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
|
|
|
|
+# do the actual object detection
|
|
|
+def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
|
+ # shape shared input array into frame for processing
|
|
|
+ arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
+
|
|
|
+ no_frames_available = -1
|
|
|
+ avg_frame = None
|
|
|
+ last_motion = -1
|
|
|
+ while True:
|
|
|
+ now = datetime.datetime.now().timestamp()
|
|
|
+ # if it has been 30 seconds since the last motion, clear the flag
|
|
|
+ if last_motion > 0 and (now - last_motion) > 30:
|
|
|
+ last_motion = -1
|
|
|
+ shared_motion.value = 0
|
|
|
+ print("motion cleared")
|
|
|
+ # if there isnt a frame ready for processing
|
|
|
+ if shared_frame_time.value == 0.0:
|
|
|
+ # save the first time there were no frames available
|
|
|
+ if no_frames_available == -1:
|
|
|
+ no_frames_available = now
|
|
|
+ # if there havent been any frames available in 30 seconds,
|
|
|
+ # sleep to avoid using so much cpu if the camera feed is down
|
|
|
+ if no_frames_available > 0 and (now - no_frames_available) > 30:
|
|
|
+ time.sleep(1)
|
|
|
+ print("sleeping because no frames have been available in a while")
|
|
|
+ else:
|
|
|
+ # rest a little bit to avoid maxing out the CPU
|
|
|
+ time.sleep(0.01)
|
|
|
+ continue
|
|
|
+
|
|
|
+ # we got a valid frame, so reset the timer
|
|
|
+ no_frames_available = -1
|
|
|
+
|
|
|
+ # if the frame is more than 0.5 second old, discard it
|
|
|
+ if (now - shared_frame_time.value) > 0.5:
|
|
|
+ # signal that we need a new frame
|
|
|
+ shared_frame_time.value = 0.0
|
|
|
+ # rest a little bit to avoid maxing out the CPU
|
|
|
+ time.sleep(0.01)
|
|
|
+ continue
|
|
|
+
|
|
|
+ # make a copy of the cropped frame
|
|
|
+ cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
+ frame_time = shared_frame_time.value
|
|
|
+ # signal that the frame has been used so a new one will be ready
|
|
|
+ shared_frame_time.value = 0.0
|
|
|
+
|
|
|
+ # convert to grayscale
|
|
|
+ gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
|
|
+ # convert to uint8
|
|
|
+ gray = (gray/256).astype('uint8')
|
|
|
+ # apply gaussian blur
|
|
|
+ gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
|
+
|
|
|
+ if avg_frame is None:
|
|
|
+ avg_frame = gray.copy().astype("float")
|
|
|
+ continue
|
|
|
+
|
|
|
+ # look at the delta from the avg_frame
|
|
|
+ cv2.accumulateWeighted(gray, avg_frame, 0.5)
|
|
|
+ frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
|
|
+ thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
+
|
|
|
+ # dilate the thresholded image to fill in holes, then find contours
|
|
|
+ # on thresholded image
|
|
|
+ thresh = cv2.dilate(thresh, None, iterations=2)
|
|
|
+ cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
|
|
|
+ cv2.CHAIN_APPROX_SIMPLE)
|
|
|
+ cnts = imutils.grab_contours(cnts)
|
|
|
+
|
|
|
+ # loop over the contours
|
|
|
+ for c in cnts:
|
|
|
+ # if the contour is too small, ignore it
|
|
|
+ if cv2.contourArea(c) < 50:
|
|
|
+ continue
|
|
|
+
|
|
|
+ print("motion_detected")
|
|
|
+ last_motion = now
|
|
|
+ shared_motion.value = 1
|
|
|
+
|
|
|
+ # compute the bounding box for the contour, draw it on the frame,
|
|
|
+ # and update the text
|
|
|
+ (x, y, w, h) = cv2.boundingRect(c)
|
|
|
+ cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
|
|
+ cv2.imwrite("motion%d.png" % frame_time, cropped_frame)
|
|
|
if __name__ == '__main__':
|
|
|
mp.freeze_support()
|
|
|
main()
|