瀏覽代碼

basic motion detection working

blakeblackshear 6 年之前
父節點
當前提交
5d894f006a
共有 1 個文件被更改,包括 153 次插入52 次删除
  1. 153 52
      detect_objects.py

+ 153 - 52
detect_objects.py

@@ -1,5 +1,6 @@
 import os
 import cv2
+import imutils
 import time
 import datetime
 import ctypes
@@ -24,8 +25,8 @@ PATH_TO_LABELS = '/label_map.pbtext'
 # TODO: make dynamic?
 NUM_CLASSES = 90
 
-#REGIONS = "600,0,380:600,600,380:600,1200,380"
-REGIONS = os.getenv('REGIONS')
+REGIONS = "300,0,0:300,300,0:300,600,0"
+#REGIONS = os.getenv('REGIONS')
 
 DETECTED_OBJECTS = []
 
@@ -152,62 +153,77 @@ def main():
         detection_process.daemon = True
         detection_processes.append(detection_process)
 
+    motion_processes = []
+    for index, region in enumerate(regions):
+        motion_process = mp.Process(target=detect_motion, args=(shared_arr, 
+            shared_memory_objects[index]['frame_time'],
+            shared_memory_objects[index]['motion_detected'],
+            frame_shape, 
+            region['size'], region['x_offset'], region['y_offset']))
+        motion_process.daemon = True
+        motion_processes.append(motion_process)
+
     object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
-    object_parser.start()
+    # object_parser.start()
 
     capture_process.start()
     print("capture_process pid ", capture_process.pid)
-    for detection_process in detection_processes:
-        detection_process.start()
-        print("detection_process pid ", detection_process.pid)
-
-    app = Flask(__name__)
-
-    @app.route('/')
-    def index():
-        # return a multipart response
-        return Response(imagestream(),
-                        mimetype='multipart/x-mixed-replace; boundary=frame')
-    def imagestream():
-        global DETECTED_OBJECTS
-        while True:
-            # max out at 5 FPS
-            time.sleep(0.2)
-            # make a copy of the current detected objects
-            detected_objects = DETECTED_OBJECTS.copy()
-            # make a copy of the current frame
-            frame = frame_arr.copy()
-            # convert to RGB for drawing
-            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
-            # draw the bounding boxes on the screen
-            for obj in DETECTED_OBJECTS:
-                vis_util.draw_bounding_box_on_image_array(frame,
-                    obj['ymin'],
-                    obj['xmin'],
-                    obj['ymax'],
-                    obj['xmax'],
-                    color='red',
-                    thickness=2,
-                    display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
-                    use_normalized_coordinates=False)
-
-            for region in regions:
-                cv2.rectangle(frame, (region['x_offset'], region['y_offset']), 
-                    (region['x_offset']+region['size'], region['y_offset']+region['size']), 
-                    (255,255,255), 2)
-            # convert back to BGR
-            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
-            # encode the image into a jpg
-            ret, jpg = cv2.imencode('.jpg', frame)
-            yield (b'--frame\r\n'
-                b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
-
-    app.run(host='0.0.0.0', debug=False)
+    # for detection_process in detection_processes:
+    #     detection_process.start()
+    #     print("detection_process pid ", detection_process.pid)
+    for motion_process in motion_processes:
+        motion_process.start()
+        print("motion_process pid ", motion_process.pid)
+
+    # app = Flask(__name__)
+
+    # @app.route('/')
+    # def index():
+    #     # return a multipart response
+    #     return Response(imagestream(),
+    #                     mimetype='multipart/x-mixed-replace; boundary=frame')
+    # def imagestream():
+    #     global DETECTED_OBJECTS
+    #     while True:
+    #         # max out at 5 FPS
+    #         time.sleep(0.2)
+    #         # make a copy of the current detected objects
+    #         detected_objects = DETECTED_OBJECTS.copy()
+    #         # make a copy of the current frame
+    #         frame = frame_arr.copy()
+    #         # convert to RGB for drawing
+    #         frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
+    #         # draw the bounding boxes on the screen
+    #         for obj in DETECTED_OBJECTS:
+    #             vis_util.draw_bounding_box_on_image_array(frame,
+    #                 obj['ymin'],
+    #                 obj['xmin'],
+    #                 obj['ymax'],
+    #                 obj['xmax'],
+    #                 color='red',
+    #                 thickness=2,
+    #                 display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
+    #                 use_normalized_coordinates=False)
+
+    #         for region in regions:
+    #             cv2.rectangle(frame, (region['x_offset'], region['y_offset']), 
+    #                 (region['x_offset']+region['size'], region['y_offset']+region['size']), 
+    #                 (255,255,255), 2)
+    #         # convert back to BGR
+    #         frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
+    #         # encode the image into a jpg
+    #         ret, jpg = cv2.imencode('.jpg', frame)
+    #         yield (b'--frame\r\n'
+    #             b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
+
+    # app.run(host='0.0.0.0', debug=False)
 
     capture_process.join()
-    for detection_process in detection_processes:
-        detection_process.join()
-    object_parser.join()
+    # for detection_process in detection_processes:
+    #     detection_process.join()
+    for motion_process in motion_processes:
+        motion_process.join()
+    # object_parser.join()
 
 # convert shared memory array into numpy array
 def tonumpyarray(mp_arr):
@@ -307,6 +323,91 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
         # copy the detected objects to the output array, filling the array when needed
         shared_output_arr[:] = objects + [0.0] * (60-len(objects))
 
+# do the actual object detection
+def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
+    # shape shared input array into frame for processing
+    arr = tonumpyarray(shared_arr).reshape(frame_shape)
+
+    no_frames_available = -1
+    avg_frame = None
+    last_motion = -1
+    while True:
+        now = datetime.datetime.now().timestamp()
+        # if it has been 30 seconds since the last motion, clear the flag
+        if last_motion > 0 and (now - last_motion) > 30:
+            last_motion = -1
+            shared_motion.value = 0
+            print("motion cleared")
+        # if there isnt a frame ready for processing
+        if shared_frame_time.value == 0.0:
+            # save the first time there were no frames available
+            if no_frames_available == -1:
+                no_frames_available = now
+            # if there havent been any frames available in 30 seconds, 
+            # sleep to avoid using so much cpu if the camera feed is down
+            if no_frames_available > 0 and (now - no_frames_available) > 30:
+                time.sleep(1)
+                print("sleeping because no frames have been available in a while")
+            else:
+                # rest a little bit to avoid maxing out the CPU
+                time.sleep(0.01)
+            continue
+        
+        # we got a valid frame, so reset the timer
+        no_frames_available = -1
+
+        # if the frame is more than 0.5 second old, discard it
+        if (now - shared_frame_time.value) > 0.5:
+            # signal that we need a new frame
+            shared_frame_time.value = 0.0
+            # rest a little bit to avoid maxing out the CPU
+            time.sleep(0.01)
+            continue
+        
+        # make a copy of the cropped frame
+        cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
+        frame_time = shared_frame_time.value
+        # signal that the frame has been used so a new one will be ready
+        shared_frame_time.value = 0.0
+
+        # convert to grayscale
+        gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
+        # convert to uint8
+        gray = (gray/256).astype('uint8')
+        # apply gaussian blur
+        gray = cv2.GaussianBlur(gray, (21, 21), 0)
+
+        if avg_frame is None:
+            avg_frame = gray.copy().astype("float")
+            continue
+        
+        # look at the delta from the avg_frame
+        cv2.accumulateWeighted(gray, avg_frame, 0.5)
+        frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
+        thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
+ 
+        # dilate the thresholded image to fill in holes, then find contours
+        # on thresholded image
+        thresh = cv2.dilate(thresh, None, iterations=2)
+        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
+            cv2.CHAIN_APPROX_SIMPLE)
+        cnts = imutils.grab_contours(cnts)
+
+        # loop over the contours
+        for c in cnts:
+            # if the contour is too small, ignore it
+            if cv2.contourArea(c) < 50:
+                continue
+            
+            print("motion_detected")
+            last_motion = now
+            shared_motion.value = 1
+
+            # compute the bounding box for the contour, draw it on the frame,
+            # and update the text
+            (x, y, w, h) = cv2.boundingRect(c)
+            cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
+            cv2.imwrite("motion%d.png" % frame_time, cropped_frame)
 if __name__ == '__main__':
     mp.freeze_support()
     main()