| 
					
				 | 
			
			
				@@ -1,5 +1,6 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import os 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import cv2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import imutils 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import time 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import datetime 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import ctypes 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -24,8 +25,8 @@ PATH_TO_LABELS = '/label_map.pbtext' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 # TODO: make dynamic? 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 NUM_CLASSES = 90 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-#REGIONS = "600,0,380:600,600,380:600,1200,380" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-REGIONS = os.getenv('REGIONS') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+REGIONS = "300,0,0:300,300,0:300,600,0" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#REGIONS = os.getenv('REGIONS') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 DETECTED_OBJECTS = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -152,62 +153,77 @@ def main(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         detection_process.daemon = True 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         detection_processes.append(detection_process) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    motion_processes = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for index, region in enumerate(regions): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        motion_process = mp.Process(target=detect_motion, args=(shared_arr,  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shared_memory_objects[index]['frame_time'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shared_memory_objects[index]['motion_detected'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            frame_shape,  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            region['size'], region['x_offset'], region['y_offset'])) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        motion_process.daemon = True 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        motion_processes.append(motion_process) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    object_parser.start() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # object_parser.start() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     capture_process.start() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     print("capture_process pid ", capture_process.pid) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    for detection_process in detection_processes: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        detection_process.start() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        print("detection_process pid ", detection_process.pid) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    app = Flask(__name__) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    @app.route('/') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    def index(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # return a multipart response 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        return Response(imagestream(), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                        mimetype='multipart/x-mixed-replace; boundary=frame') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    def imagestream(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        global DETECTED_OBJECTS 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        while True: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # max out at 5 FPS 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            time.sleep(0.2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # make a copy of the current detected objects 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            detected_objects = DETECTED_OBJECTS.copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # make a copy of the current frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            frame = frame_arr.copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # convert to RGB for drawing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # draw the bounding boxes on the screen 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for obj in DETECTED_OBJECTS: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                vis_util.draw_bounding_box_on_image_array(frame, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    obj['ymin'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    obj['xmin'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    obj['ymax'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    obj['xmax'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    color='red', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    thickness=2, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    use_normalized_coordinates=False) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for region in regions: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                cv2.rectangle(frame, (region['x_offset'], region['y_offset']),  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    (region['x_offset']+region['size'], region['y_offset']+region['size']),  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    (255,255,255), 2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # convert back to BGR 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # encode the image into a jpg 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            ret, jpg = cv2.imencode('.jpg', frame) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            yield (b'--frame\r\n' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    app.run(host='0.0.0.0', debug=False) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # for detection_process in detection_processes: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     detection_process.start() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     print("detection_process pid ", detection_process.pid) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for motion_process in motion_processes: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        motion_process.start() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        print("motion_process pid ", motion_process.pid) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # app = Flask(__name__) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # @app.route('/') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # def index(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     # return a multipart response 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     return Response(imagestream(), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                     mimetype='multipart/x-mixed-replace; boundary=frame') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # def imagestream(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     global DETECTED_OBJECTS 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     while True: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         # max out at 5 FPS 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         time.sleep(0.2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         # make a copy of the current detected objects 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         detected_objects = DETECTED_OBJECTS.copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         # make a copy of the current frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         frame = frame_arr.copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         # convert to RGB for drawing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         # draw the bounding boxes on the screen 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         for obj in DETECTED_OBJECTS: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #             vis_util.draw_bounding_box_on_image_array(frame, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 obj['ymin'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 obj['xmin'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 obj['ymax'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 obj['xmax'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 color='red', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 thickness=2, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 use_normalized_coordinates=False) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         for region in regions: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #             cv2.rectangle(frame, (region['x_offset'], region['y_offset']),  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 (region['x_offset']+region['size'], region['y_offset']+region['size']),  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #                 (255,255,255), 2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         # convert back to BGR 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         # encode the image into a jpg 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         ret, jpg = cv2.imencode('.jpg', frame) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #         yield (b'--frame\r\n' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #             b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # app.run(host='0.0.0.0', debug=False) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     capture_process.join() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    for detection_process in detection_processes: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        detection_process.join() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    object_parser.join() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # for detection_process in detection_processes: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     detection_process.join() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for motion_process in motion_processes: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        motion_process.join() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # object_parser.join() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 # convert shared memory array into numpy array 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 def tonumpyarray(mp_arr): 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -307,6 +323,91 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # copy the detected objects to the output array, filling the array when needed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         shared_output_arr[:] = objects + [0.0] * (60-len(objects)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# do the actual object detection 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # shape shared input array into frame for processing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    arr = tonumpyarray(shared_arr).reshape(frame_shape) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    no_frames_available = -1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    avg_frame = None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    last_motion = -1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    while True: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        now = datetime.datetime.now().timestamp() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # if it has been 30 seconds since the last motion, clear the flag 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if last_motion > 0 and (now - last_motion) > 30: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            last_motion = -1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shared_motion.value = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            print("motion cleared") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # if there isnt a frame ready for processing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if shared_frame_time.value == 0.0: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # save the first time there were no frames available 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if no_frames_available == -1: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                no_frames_available = now 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # if there havent been any frames available in 30 seconds,  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # sleep to avoid using so much cpu if the camera feed is down 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if no_frames_available > 0 and (now - no_frames_available) > 30: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                time.sleep(1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                print("sleeping because no frames have been available in a while") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                # rest a little bit to avoid maxing out the CPU 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                time.sleep(0.01) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # we got a valid frame, so reset the timer 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        no_frames_available = -1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # if the frame is more than 0.5 second old, discard it 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (now - shared_frame_time.value) > 0.5: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # signal that we need a new frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shared_frame_time.value = 0.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # rest a little bit to avoid maxing out the CPU 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            time.sleep(0.01) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # make a copy of the cropped frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        frame_time = shared_frame_time.value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # signal that the frame has been used so a new one will be ready 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        shared_frame_time.value = 0.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # convert to grayscale 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # convert to uint8 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        gray = (gray/256).astype('uint8') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # apply gaussian blur 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        gray = cv2.GaussianBlur(gray, (21, 21), 0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if avg_frame is None: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            avg_frame = gray.copy().astype("float") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # look at the delta from the avg_frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        cv2.accumulateWeighted(gray, avg_frame, 0.5) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # dilate the thresholded image to fill in holes, then find contours 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # on thresholded image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        thresh = cv2.dilate(thresh, None, iterations=2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cv2.CHAIN_APPROX_SIMPLE) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        cnts = imutils.grab_contours(cnts) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # loop over the contours 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for c in cnts: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # if the contour is too small, ignore it 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if cv2.contourArea(c) < 50: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+             
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            print("motion_detected") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            last_motion = now 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shared_motion.value = 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # compute the bounding box for the contour, draw it on the frame, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # and update the text 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            (x, y, w, h) = cv2.boundingRect(c) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cv2.imwrite("motion%d.png" % frame_time, cropped_frame) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 if __name__ == '__main__': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     mp.freeze_support() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     main() 
			 |