| 
					
				 | 
			
			
				@@ -9,7 +9,6 @@ from abc import ABC, abstractmethod 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 from typing import Dict 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import numpy as np 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-from pycoral.adapters import detect 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import tflite_runtime.interpreter as tflite 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 from setproctitle import setproctitle 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 from tflite_runtime.interpreter import load_delegate 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -103,19 +102,25 @@ class LocalObjectDetector(ObjectDetector): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         self.interpreter.invoke() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        objects = detect.get_objects(self.interpreter, 0.4) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        count = int( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         detections = np.zeros((20, 6), np.float32) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        for i, obj in enumerate(objects): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            if i == 20: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i in range(count): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if scores[i] < 0.4 or i == 20: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 break 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             detections[i] = [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                obj.id, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                obj.score, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                obj.bbox.ymin, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                obj.bbox.xmin, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                obj.bbox.ymax, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                obj.bbox.xmax, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                class_ids[i], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                float(scores[i]), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                boxes[i][0], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                boxes[i][1], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                boxes[i][2], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                boxes[i][3], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         return detections 
			 |