|
@@ -9,7 +9,6 @@ from abc import ABC, abstractmethod
|
|
|
from typing import Dict
|
|
|
|
|
|
import numpy as np
|
|
|
-from pycoral.adapters import detect
|
|
|
import tflite_runtime.interpreter as tflite
|
|
|
from setproctitle import setproctitle
|
|
|
from tflite_runtime.interpreter import load_delegate
|
|
@@ -103,19 +102,25 @@ class LocalObjectDetector(ObjectDetector):
|
|
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
|
|
self.interpreter.invoke()
|
|
|
|
|
|
- objects = detect.get_objects(self.interpreter, 0.4)
|
|
|
+ boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
|
|
+ class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
|
|
+ scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
|
|
+ count = int(
|
|
|
+ self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0]
|
|
|
+ )
|
|
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
- for i, obj in enumerate(objects):
|
|
|
- if i == 20:
|
|
|
+
|
|
|
+ for i in range(count):
|
|
|
+ if scores[i] < 0.4 or i == 20:
|
|
|
break
|
|
|
detections[i] = [
|
|
|
- obj.id,
|
|
|
- obj.score,
|
|
|
- obj.bbox.ymin,
|
|
|
- obj.bbox.xmin,
|
|
|
- obj.bbox.ymax,
|
|
|
- obj.bbox.xmax,
|
|
|
+ class_ids[i],
|
|
|
+ float(scores[i]),
|
|
|
+ boxes[i][0],
|
|
|
+ boxes[i][1],
|
|
|
+ boxes[i][2],
|
|
|
+ boxes[i][3],
|
|
|
]
|
|
|
|
|
|
return detections
|