Sen descrición

Blake Blackshear eb16de7395 config option for stationary detection interval %!s(int64=3) %!d(string=hai) anos
.devcontainer b91b0d39dd updated devcontainer %!s(int64=3) %!d(string=hai) anos
.github c492b30adb Merge pull request #825 from blakeblackshear/release-0.9.0 %!s(int64=3) %!d(string=hai) anos
docker 0f5dfea9de add support for rockchip hwaccel %!s(int64=3) %!d(string=hai) anos
docs eb16de7395 config option for stationary detection interval %!s(int64=3) %!d(string=hai) anos
frigate eb16de7395 config option for stationary detection interval %!s(int64=3) %!d(string=hai) anos
migrations 2f2329ba44 only save recordings when an event is in progress %!s(int64=3) %!d(string=hai) anos
web 2f2329ba44 only save recordings when an event is in progress %!s(int64=3) %!d(string=hai) anos
.dockerignore c1132e6897 update ignore files %!s(int64=3) %!d(string=hai) anos
.gitignore c1132e6897 update ignore files %!s(int64=3) %!d(string=hai) anos
.pylintrc 040ffda687 use fstr log style %!s(int64=4) %!d(string=hai) anos
LICENSE 53ccc903da switch to MIT license %!s(int64=4) %!d(string=hai) anos
Makefile 6c8b184d2c version tick %!s(int64=3) %!d(string=hai) anos
README.md 74986982a0 update docs url %!s(int64=3) %!d(string=hai) anos
benchmark.py f946813ccb support multiple coral devices (fixes #100) %!s(int64=4) %!d(string=hai) anos
docker-compose.yml c70419bd0b update birdseye layout calculations %!s(int64=3) %!d(string=hai) anos
labelmap.txt acb75fa02d refactor and reduce false positives %!s(int64=4) %!d(string=hai) anos

README.md

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video with retention settings based on detected objects
  • 24/7 recording
  • Re-streaming via RTMP to reduce the number of connections to your camera

Documentation

View the documentation at https://docs.frigate.video

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Integration into Home Assistant

Also comes with a builtin UI:

Events