123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- import os
- import time
- import datetime
- import cv2
- import queue
- import threading
- import ctypes
- import multiprocessing as mp
- import subprocess as sp
- import numpy as np
- import prctl
- import copy
- import itertools
- from collections import defaultdict
- from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
- from frigate.object_detection import RegionPrepper, RegionRequester
- from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
- from frigate.mqtt import MqttObjectPublisher
- # Stores 2 seconds worth of frames so they can be used for other threads
- class FrameTracker(threading.Thread):
- def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
- threading.Thread.__init__(self)
- self.frame_time = frame_time
- self.frame_ready = frame_ready
- self.frame_lock = frame_lock
- self.recent_frames = recent_frames
-
- def run(self):
- prctl.set_name(self.__class__.__name__)
- while True:
- # wait for a frame
- with self.frame_ready:
- self.frame_ready.wait()
- # delete any old frames
- stored_frame_times = list(self.recent_frames.keys())
- stored_frame_times.sort(reverse=True)
- if len(stored_frame_times) > 100:
- frames_to_delete = stored_frame_times[50:]
- for k in frames_to_delete:
- del self.recent_frames[k]
- def get_frame_shape(source):
- # capture a single frame and check the frame shape so the correct array
- # size can be allocated in memory
- video = cv2.VideoCapture(source)
- ret, frame = video.read()
- frame_shape = frame.shape
- video.release()
- return frame_shape
- def get_ffmpeg_input(ffmpeg_input):
- frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
- return ffmpeg_input.format(**frigate_vars)
- class CameraWatchdog(threading.Thread):
- def __init__(self, camera):
- threading.Thread.__init__(self)
- self.camera = camera
- def run(self):
- prctl.set_name(self.__class__.__name__)
- while True:
- # wait a bit before checking
- time.sleep(10)
- if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
- print("last frame is more than 5 minutes old, restarting camera capture...")
- self.camera.start_or_restart_capture()
- time.sleep(5)
- # Thread to read the stdout of the ffmpeg process and update the current frame
- class CameraCapture(threading.Thread):
- def __init__(self, camera):
- threading.Thread.__init__(self)
- self.camera = camera
- def run(self):
- prctl.set_name(self.__class__.__name__)
- frame_num = 0
- while True:
- if self.camera.ffmpeg_process.poll() != None:
- print("ffmpeg process is not running. exiting capture thread...")
- break
- raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
- if len(raw_image) == 0:
- print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
- break
- frame_num += 1
- if (frame_num % self.camera.take_frame) != 0:
- continue
- with self.camera.frame_lock:
- # TODO: use frame_queue instead
- self.camera.frame_time.value = datetime.datetime.now().timestamp()
- self.camera.frame_cache[self.camera.frame_time.value] = (
- np
- .frombuffer(raw_image, np.uint8)
- .reshape(self.camera.frame_shape)
- )
- self.camera.frame_queue.put(self.camera.frame_time.value)
- # Notify with the condition that a new frame is ready
- with self.camera.frame_ready:
- self.camera.frame_ready.notify_all()
- self.camera.fps.update()
- class VideoWriter(threading.Thread):
- def __init__(self, camera):
- threading.Thread.__init__(self)
- self.camera = camera
- def run(self):
- prctl.set_name(self.__class__.__name__)
- while True:
- (frame_time, tracked_objects) = self.camera.frame_output_queue.get()
- # if len(self.camera.object_tracker.tracked_objects) == 0:
- # continue
- # f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
- # f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
- # f.close()
- class Camera:
- def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
- self.name = name
- self.config = config
- self.detected_objects = defaultdict(lambda: [])
- self.frame_cache = {}
- self.last_processed_frame = None
- # queue for re-assembling frames in order
- self.frame_queue = queue.Queue()
- # track how many regions have been requested for a frame so we know when a frame is complete
- self.regions_in_process = {}
- # Lock to control access
- self.regions_in_process_lock = mp.Lock()
- self.finished_frame_queue = queue.Queue()
- self.refined_frame_queue = queue.Queue()
- self.frame_output_queue = queue.Queue()
- self.ffmpeg = config.get('ffmpeg', {})
- self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
- self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
- self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
- self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
- self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
- camera_objects_config = config.get('objects', {})
- self.take_frame = self.config.get('take_frame', 1)
- self.regions = self.config['regions']
- self.frame_shape = get_frame_shape(self.ffmpeg_input)
- self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
- self.mqtt_client = mqtt_client
- self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
- # create shared value for storing the frame_time
- self.frame_time = mp.Value('d', 0.0)
- # Lock to control access to the frame
- self.frame_lock = mp.Lock()
- # Condition for notifying that a new frame is ready
- self.frame_ready = mp.Condition()
- # Condition for notifying that objects were tracked
- self.objects_tracked = mp.Condition()
- # Queue for prepped frames, max size set to (number of regions * 5)
- max_queue_size = len(self.config['regions'])*5
- self.resize_queue = queue.Queue()
- # Queue for raw detected objects
- self.detected_objects_queue = queue.Queue()
- self.detected_objects_processor = DetectedObjectsProcessor(self)
- self.detected_objects_processor.start()
- # initialize the frame cache
- self.cached_frame_with_objects = {
- 'frame_bytes': [],
- 'frame_time': 0
- }
- self.ffmpeg_process = None
- self.capture_thread = None
- self.fps = EventsPerSecond()
- # combine tracked objects lists
- self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
- # merge object filters
- global_object_filters = global_objects_config.get('filters', {})
- camera_object_filters = camera_objects_config.get('filters', {})
- objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
- self.object_filters = {}
- for obj in objects_with_config:
- self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
- # start a thread to track objects
- self.object_tracker = ObjectTracker(self, 10)
- self.object_tracker.start()
- # start a thread to write tracked frames to disk
- self.video_writer = VideoWriter(self)
- self.video_writer.start()
- # start a thread to queue resize requests for regions
- self.region_requester = RegionRequester(self)
- self.region_requester.start()
- # start a thread to cache recent frames for processing
- self.frame_tracker = FrameTracker(self.frame_time,
- self.frame_ready, self.frame_lock, self.frame_cache)
- self.frame_tracker.start()
- # start a thread to resize regions
- self.region_prepper = RegionPrepper(self.frame_cache, self.resize_queue, prepped_frame_queue)
- self.region_prepper.start()
- # start a thread to store the highest scoring recent frames for monitored object types
- self.best_frames = BestFrames(self)
- self.best_frames.start()
- # start a thread to expire objects from the detected objects list
- self.object_cleaner = ObjectCleaner(self)
- self.object_cleaner.start()
- # start a thread to refine regions when objects are clipped
- self.dynamic_region_fps = EventsPerSecond()
- self.region_refiner = RegionRefiner(self)
- self.region_refiner.start()
- self.dynamic_region_fps.start()
- # start a thread to publish object scores
- mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
- mqtt_publisher.start()
- # create a watchdog thread for capture process
- self.watchdog = CameraWatchdog(self)
- # load in the mask for object detection
- if 'mask' in self.config:
- self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
- else:
- self.mask = None
- if self.mask is None:
- self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
- self.mask[:] = 255
- def start_or_restart_capture(self):
- if not self.ffmpeg_process is None:
- print("Terminating the existing ffmpeg process...")
- self.ffmpeg_process.terminate()
- try:
- print("Waiting for ffmpeg to exit gracefully...")
- self.ffmpeg_process.wait(timeout=30)
- except sp.TimeoutExpired:
- print("FFmpeg didnt exit. Force killing...")
- self.ffmpeg_process.kill()
- self.ffmpeg_process.wait()
- print("Waiting for the capture thread to exit...")
- self.capture_thread.join()
- self.ffmpeg_process = None
- self.capture_thread = None
-
- # create the process to capture frames from the input stream and store in a shared array
- print("Creating a new ffmpeg process...")
- self.start_ffmpeg()
-
- print("Creating a new capture thread...")
- self.capture_thread = CameraCapture(self)
- print("Starting a new capture thread...")
- self.capture_thread.start()
- self.fps.start()
-
- def start_ffmpeg(self):
- ffmpeg_cmd = (['ffmpeg'] +
- self.ffmpeg_global_args +
- self.ffmpeg_hwaccel_args +
- self.ffmpeg_input_args +
- ['-i', self.ffmpeg_input] +
- self.ffmpeg_output_args +
- ['pipe:'])
- print(" ".join(ffmpeg_cmd))
-
- self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
-
- def start(self):
- self.start_or_restart_capture()
- self.watchdog.start()
-
- def join(self):
- self.capture_thread.join()
-
- def get_capture_pid(self):
- return self.ffmpeg_process.pid
-
- def get_best(self, label):
- return self.best_frames.best_frames.get(label)
- def stats(self):
- return {
- 'camera_fps': self.fps.eps(60),
- 'resize_queue': self.resize_queue.qsize(),
- 'frame_queue': self.frame_queue.qsize(),
- 'finished_frame_queue': self.finished_frame_queue.qsize(),
- 'refined_frame_queue': self.refined_frame_queue.qsize(),
- 'regions_in_process': self.regions_in_process,
- 'dynamic_regions_per_sec': self.dynamic_region_fps.eps()
- }
-
- def frame_with_objects(self, frame_time, tracked_objects=None):
- frame = self.frame_cache[frame_time].copy()
- detected_objects = self.detected_objects[frame_time].copy()
- for region in self.regions:
- color = (255,255,255)
- cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
- (region['x_offset']+region['size'], region['y_offset']+region['size']),
- color, 2)
- # draw the bounding boxes on the screen
- if tracked_objects is None:
- tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
- for obj in detected_objects:
- draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}", thickness=3)
-
- for id, obj in tracked_objects.items():
- color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
- draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {id}", color=color, thickness=1)
- # print a timestamp
- time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
- cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
-
- # print fps
- cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
- # convert to BGR
- frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
- # encode the image into a jpg
- ret, jpg = cv2.imencode('.jpg', frame)
- return jpg.tobytes()
- def get_current_frame_with_objects(self):
- frame_time = self.last_processed_frame
- if frame_time == self.cached_frame_with_objects['frame_time']:
- return self.cached_frame_with_objects['frame_bytes']
- frame_bytes = self.frame_with_objects(frame_time)
- self.cached_frame_with_objects = {
- 'frame_bytes': frame_bytes,
- 'frame_time': frame_time
- }
- return frame_bytes
-
-
|