123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 |
- import base64
- import copy
- import ctypes
- import datetime
- import itertools
- import json
- import logging
- import multiprocessing as mp
- import os
- import queue
- import subprocess as sp
- import signal
- import threading
- import time
- from collections import defaultdict
- from typing import Dict, List
- import cv2
- import numpy as np
- from frigate.config import CameraConfig
- from frigate.edgetpu import RemoteObjectDetector
- from frigate.log import LogPipe
- from frigate.motion import MotionDetector
- from frigate.objects import ObjectTracker
- from frigate.util import (EventsPerSecond, FrameManager,
- SharedMemoryFrameManager, area, calculate_region,
- clipped, draw_box_with_label, intersection,
- intersection_over_union, listen, yuv_region_2_rgb)
- logger = logging.getLogger(__name__)
- def filtered(obj, objects_to_track, object_filters, mask=None):
- object_name = obj[0]
- if not object_name in objects_to_track:
- return True
-
- if object_name in object_filters:
- obj_settings = object_filters[object_name]
- # if the min area is larger than the
- # detected object, don't add it to detected objects
- if obj_settings.min_area > obj[3]:
- return True
-
- # if the detected object is larger than the
- # max area, don't add it to detected objects
- if obj_settings.max_area < obj[3]:
- return True
- # if the score is lower than the min_score, skip
- if obj_settings.min_score > obj[1]:
- return True
-
- # compute the coordinates of the object and make sure
- # the location isnt outside the bounds of the image (can happen from rounding)
- y_location = min(int(obj[2][3]), len(mask)-1)
- x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
- # if the object is in a masked location, don't add it to detected objects
- if (not mask is None) and (mask[y_location][x_location] == 0):
- return True
-
- return False
- def create_tensor_input(frame, model_shape, region):
- cropped_frame = yuv_region_2_rgb(frame, region)
- # Resize to 300x300 if needed
- if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
- cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
-
- # Expand dimensions since the model expects images to have shape: [1, height, width, 3]
- return np.expand_dims(cropped_frame, axis=0)
- def stop_ffmpeg(ffmpeg_process, logger):
- logger.info("Terminating the existing ffmpeg process...")
- ffmpeg_process.terminate()
- try:
- logger.info("Waiting for ffmpeg to exit gracefully...")
- ffmpeg_process.communicate(timeout=30)
- except sp.TimeoutExpired:
- logger.info("FFmpeg didnt exit. Force killing...")
- ffmpeg_process.kill()
- ffmpeg_process.communicate()
- ffmpeg_process = None
- def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
- if not ffmpeg_process is None:
- stop_ffmpeg(ffmpeg_process, logger)
- if frame_size is None:
- process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
- else:
- process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
- return process
- def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
- frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
- frame_size = frame_shape[0] * frame_shape[1]
- frame_rate = EventsPerSecond()
- frame_rate.start()
- skipped_eps = EventsPerSecond()
- skipped_eps.start()
- while True:
- fps.value = frame_rate.eps()
- skipped_fps = skipped_eps.eps()
- current_frame.value = datetime.datetime.now().timestamp()
- frame_name = f"{camera_name}{current_frame.value}"
- frame_buffer = frame_manager.create(frame_name, frame_size)
- try:
- frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
- except Exception as e:
- logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
- if ffmpeg_process.poll() != None:
- logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
- frame_manager.delete(frame_name)
- break
- continue
- frame_rate.update()
- # if the queue is full, skip this frame
- if frame_queue.full():
- skipped_eps.update()
- frame_manager.delete(frame_name)
- continue
- # close the frame
- frame_manager.close(frame_name)
- # add to the queue
- frame_queue.put(current_frame.value)
- class CameraWatchdog(threading.Thread):
- def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
- threading.Thread.__init__(self)
- self.logger = logging.getLogger(f"watchdog.{camera_name}")
- self.camera_name = camera_name
- self.config = config
- self.capture_thread = None
- self.ffmpeg_detect_process = None
- self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
- self.ffmpeg_other_processes = []
- self.camera_fps = camera_fps
- self.ffmpeg_pid = ffmpeg_pid
- self.frame_queue = frame_queue
- self.frame_shape = self.config.frame_shape_yuv
- self.frame_size = self.frame_shape[0] * self.frame_shape[1]
- self.stop_event = stop_event
- def run(self):
- self.start_ffmpeg_detect()
- for c in self.config.ffmpeg_cmds:
- if 'detect' in c['roles']:
- continue
- logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
- self.ffmpeg_other_processes.append({
- 'cmd': c['cmd'],
- 'logpipe': logpipe,
- 'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
- })
-
- time.sleep(10)
- while True:
- if self.stop_event.is_set():
- stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
- for p in self.ffmpeg_other_processes:
- stop_ffmpeg(p['process'], self.logger)
- p['logpipe'].close()
- self.logpipe.close()
- break
- now = datetime.datetime.now().timestamp()
- if not self.capture_thread.is_alive():
- self.start_ffmpeg_detect()
- elif now - self.capture_thread.current_frame.value > 20:
- self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
- self.ffmpeg_detect_process.terminate()
- try:
- self.logger.info("Waiting for ffmpeg to exit gracefully...")
- self.ffmpeg_detect_process.communicate(timeout=30)
- except sp.TimeoutExpired:
- self.logger.info("FFmpeg didnt exit. Force killing...")
- self.ffmpeg_detect_process.kill()
- self.ffmpeg_detect_process.communicate()
-
- for p in self.ffmpeg_other_processes:
- poll = p['process'].poll()
- if poll == None:
- continue
- p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
-
- # wait a bit before checking again
- time.sleep(10)
-
- def start_ffmpeg_detect(self):
- ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
- self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
- self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
- self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
- self.camera_fps)
- self.capture_thread.start()
- class CameraCapture(threading.Thread):
- def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
- threading.Thread.__init__(self)
- self.name = f"capture:{camera_name}"
- self.camera_name = camera_name
- self.frame_shape = frame_shape
- self.frame_queue = frame_queue
- self.fps = fps
- self.skipped_fps = EventsPerSecond()
- self.frame_manager = SharedMemoryFrameManager()
- self.ffmpeg_process = ffmpeg_process
- self.current_frame = mp.Value('d', 0.0)
- self.last_frame = 0
- def run(self):
- self.skipped_fps.start()
- capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
- self.fps, self.skipped_fps, self.current_frame)
- def capture_camera(name, config: CameraConfig, process_info):
- stop_event = mp.Event()
- def receiveSignal(signalNumber, frame):
- stop_event.set()
-
- signal.signal(signal.SIGTERM, receiveSignal)
- signal.signal(signal.SIGINT, receiveSignal)
- frame_queue = process_info['frame_queue']
- camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
- camera_watchdog.start()
- camera_watchdog.join()
- def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
- stop_event = mp.Event()
- def receiveSignal(signalNumber, frame):
- stop_event.set()
-
- signal.signal(signal.SIGTERM, receiveSignal)
- signal.signal(signal.SIGINT, receiveSignal)
- threading.current_thread().name = f"process:{name}"
- listen()
- frame_queue = process_info['frame_queue']
- frame_shape = config.frame_shape
- objects_to_track = config.objects.track
- object_filters = config.objects.filters
- mask = config.mask
- motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
- object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
- object_tracker = ObjectTracker(10)
- frame_manager = SharedMemoryFrameManager()
- process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
- object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
- logger.info(f"{name}: exiting subprocess")
- def reduce_boxes(boxes):
- if len(boxes) == 0:
- return []
- reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
- return [tuple(b) for b in reduced_boxes]
- def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask):
- tensor_input = create_tensor_input(frame, model_shape, region)
- detections = []
- region_detections = object_detector.detect(tensor_input)
- for d in region_detections:
- box = d[2]
- size = region[2]-region[0]
- x_min = int((box[1] * size) + region[0])
- y_min = int((box[0] * size) + region[1])
- x_max = int((box[3] * size) + region[0])
- y_max = int((box[2] * size) + region[1])
- det = (d[0],
- d[1],
- (x_min, y_min, x_max, y_max),
- (x_max-x_min)*(y_max-y_min),
- region)
- # apply object filters
- if filtered(det, objects_to_track, object_filters, mask):
- continue
- detections.append(det)
- return detections
- def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
- frame_manager: FrameManager, motion_detector: MotionDetector,
- object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
- detected_objects_queue: mp.Queue, process_info: Dict,
- objects_to_track: List[str], object_filters, mask, stop_event,
- exit_on_empty: bool = False):
-
- fps = process_info['process_fps']
- detection_fps = process_info['detection_fps']
- current_frame_time = process_info['detection_frame']
- fps_tracker = EventsPerSecond()
- fps_tracker.start()
- while True:
- if stop_event.is_set():
- break
- if exit_on_empty and frame_queue.empty():
- logger.info(f"Exiting track_objects...")
- break
- try:
- frame_time = frame_queue.get(True, 10)
- except queue.Empty:
- continue
- current_frame_time.value = frame_time
- frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
- if frame is None:
- logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
- continue
- # look for motion
- motion_boxes = motion_detector.detect(frame)
- tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
- # combine motion boxes with known locations of existing objects
- combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
- # compute regions
- regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
- for a in combined_boxes]
- # combine overlapping regions
- combined_regions = reduce_boxes(regions)
- # re-compute regions
- regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
- for a in combined_regions]
- # resize regions and detect
- detections = []
- for region in regions:
- detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
-
- #########
- # merge objects, check for clipped objects and look again up to 4 times
- #########
- refining = True
- refine_count = 0
- while refining and refine_count < 4:
- refining = False
- # group by name
- detected_object_groups = defaultdict(lambda: [])
- for detection in detections:
- detected_object_groups[detection[0]].append(detection)
- selected_objects = []
- for group in detected_object_groups.values():
- # apply non-maxima suppression to suppress weak, overlapping bounding boxes
- boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
- for o in group]
- confidences = [o[1] for o in group]
- idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
- for index in idxs:
- obj = group[index[0]]
- if clipped(obj, frame_shape):
- box = obj[2]
- # calculate a new region that will hopefully get the entire object
- region = calculate_region(frame_shape,
- box[0], box[1],
- box[2], box[3])
-
- selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
- refining = True
- else:
- selected_objects.append(obj)
- # set the detections list to only include top, complete objects
- # and new detections
- detections = selected_objects
- if refining:
- refine_count += 1
- # now that we have refined our detections, we need to track objects
- object_tracker.match_and_update(frame_time, detections)
- # add to the queue if not full
- if(detected_objects_queue.full()):
- frame_manager.delete(f"{camera_name}{frame_time}")
- continue
- else:
- fps_tracker.update()
- fps.value = fps_tracker.eps()
- detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
- detection_fps.value = object_detector.fps.eps()
- frame_manager.close(f"{camera_name}{frame_time}")
|