Keine Beschreibung

Jason Hunter c71b717a54 more lint fixes vor 3 Jahren
.devcontainer 482399d82f allow logger daemon process to be killed with the main thread, thus allowing us to continue logging during shutdown vor 4 Jahren
.github 423ea26266 Add paularmstrong to funding.yml vor 4 Jahren
docker aab6a00e4c Add support for NGINX VOD Module vor 4 Jahren
docs 8dfff83447 Added support for authentication with client certificate with MQTT broker vor 3 Jahren
frigate e8c342e162 Update http.py vor 3 Jahren
migrations f7975cbbc4 remove backfill - only store rows moving forward vor 3 Jahren
nginx 0d96c3529d We need to use relative URLs for Ingress to work vor 3 Jahren
web c71b717a54 more lint fixes vor 3 Jahren
.dockerignore b8f72a5bcb add devcontainer setup vor 4 Jahren
.gitignore 84a0827aee Use dataclasses for config handling vor 4 Jahren
.pylintrc 040ffda687 use fstr log style vor 4 Jahren
LICENSE 53ccc903da switch to MIT license vor 4 Jahren
Makefile 926eec3c65 add --push so the images actually get published for nginx since they are not saved locally vor 4 Jahren
README.md cf62dccef7 Correct spelling Home Assistant vor 4 Jahren
benchmark.py f946813ccb support multiple coral devices (fixes #100) vor 4 Jahren
docker-compose.yml aab6a00e4c Add support for NGINX VOD Module vor 4 Jahren
labelmap.txt acb75fa02d refactor and reduce false positives vor 4 Jahren
run.sh aab6a00e4c Add support for NGINX VOD Module vor 4 Jahren

README.md

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video clips of detected objects
  • 24/7 recording
  • Re-streaming via RTMP to reduce the number of connections to your camera

Documentation

View the documentation at https://blakeblackshear.github.io/frigate

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Integration into Home Assistant

Also comes with a builtin UI:

Events