123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430 |
- import time
- import datetime
- import threading
- import cv2
- import prctl
- import itertools
- import numpy as np
- from collections import defaultdict
- from scipy.spatial import distance as dist
- from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
- class ObjectCleaner(threading.Thread):
- def __init__(self, objects_parsed, detected_objects):
- threading.Thread.__init__(self)
- self._objects_parsed = objects_parsed
- self._detected_objects = detected_objects
- def run(self):
- prctl.set_name("ObjectCleaner")
- while True:
- # wait a bit before checking for expired frames
- time.sleep(0.2)
- # expire the objects that are more than 1 second old
- now = datetime.datetime.now().timestamp()
- # look for the first object found within the last second
- # (newest objects are appended to the end)
- detected_objects = self._detected_objects.copy()
- objects_removed = False
- for frame_time in detected_objects.keys():
- if now-frame_time>2:
- del self._detected_objects[frame_time]
- objects_removed = True
- if objects_removed:
- # notify that parsed objects were changed
- with self._objects_parsed:
- self._objects_parsed.notify_all()
- class DetectedObjectsProcessor(threading.Thread):
- def __init__(self, camera):
- threading.Thread.__init__(self)
- self.camera = camera
- def run(self):
- prctl.set_name(self.__class__.__name__)
- while True:
- frame = self.camera.detected_objects_queue.get()
- objects = frame['detected_objects']
- for raw_obj in objects:
- name = str(LABELS[raw_obj.label_id])
- if not name in self.camera.objects_to_track:
- continue
- obj = {
- 'name': name,
- 'score': float(raw_obj.score),
- 'box': {
- 'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
- 'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
- 'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
- 'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
- },
- 'region': {
- 'xmin': frame['x_offset'],
- 'ymin': frame['y_offset'],
- 'xmax': frame['x_offset']+frame['size'],
- 'ymax': frame['y_offset']+frame['size']
- },
- 'frame_time': frame['frame_time'],
- 'region_id': frame['region_id']
- }
-
- # if the object is within 5 pixels of the region border, and the region is not on the edge
- # consider the object to be clipped
- obj['clipped'] = False
- if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
- (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
- (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
- (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
- obj['clipped'] = True
-
- # Compute the area
- obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
- self.camera.detected_objects[frame['frame_time']].append(obj)
-
- with self.camera.regions_in_process_lock:
- self.camera.regions_in_process[frame['frame_time']] -= 1
- # print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
- if self.camera.regions_in_process[frame['frame_time']] == 0:
- del self.camera.regions_in_process[frame['frame_time']]
- # print(f"{frame['frame_time']} no remaining regions")
- self.camera.finished_frame_queue.put(frame['frame_time'])
- # Thread that checks finished frames for clipped objects and sends back
- # for processing if needed
- class RegionRefiner(threading.Thread):
- def __init__(self, camera):
- threading.Thread.__init__(self)
- self.camera = camera
- def run(self):
- prctl.set_name(self.__class__.__name__)
- while True:
- frame_time = self.camera.finished_frame_queue.get()
- detected_objects = self.camera.detected_objects[frame_time].copy()
- # print(f"{frame_time} finished")
- # group by name
- detected_object_groups = defaultdict(lambda: [])
- for obj in detected_objects:
- detected_object_groups[obj['name']].append(obj)
- look_again = False
- selected_objects = []
- for group in detected_object_groups.values():
- # apply non-maxima suppression to suppress weak, overlapping bounding boxes
- boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
- for o in group]
- confidences = [o['score'] for o in group]
- idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
- for index in idxs:
- obj = group[index[0]]
- selected_objects.append(obj)
- if obj['clipped']:
- box = obj['box']
- # calculate a new region that will hopefully get the entire object
- (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
- box['xmin'], box['ymin'],
- box['xmax'], box['ymax'])
- # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
- with self.camera.regions_in_process_lock:
- if not frame_time in self.camera.regions_in_process:
- self.camera.regions_in_process[frame_time] = 1
- else:
- self.camera.regions_in_process[frame_time] += 1
- # add it to the queue
- self.camera.resize_queue.put({
- 'camera_name': self.camera.name,
- 'frame_time': frame_time,
- 'region_id': -1,
- 'size': size,
- 'x_offset': x_offset,
- 'y_offset': y_offset
- })
- self.camera.dynamic_region_fps.update()
- look_again = True
- # if we are looking again, then this frame is not ready for processing
- if look_again:
- # remove the clipped objects
- self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
- continue
- # filter objects based on camera settings
- selected_objects = [o for o in selected_objects if not self.filtered(o)]
- self.camera.detected_objects[frame_time] = selected_objects
- with self.camera.objects_parsed:
- self.camera.objects_parsed.notify_all()
-
- # print(f"{frame_time} is actually finished")
- # keep adding frames to the refined queue as long as they are finished
- with self.camera.regions_in_process_lock:
- while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
- self.camera.last_processed_frame = self.camera.frame_queue.get()
- self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
- def filtered(self, obj):
- object_name = obj['name']
-
- if object_name in self.camera.object_filters:
- obj_settings = self.camera.object_filters[object_name]
- # if the min area is larger than the
- # detected object, don't add it to detected objects
- if obj_settings.get('min_area',-1) > obj['area']:
- return True
-
- # if the detected object is larger than the
- # max area, don't add it to detected objects
- if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
- return True
- # if the score is lower than the threshold, skip
- if obj_settings.get('threshold', 0) > obj['score']:
- return True
-
- # compute the coordinates of the object and make sure
- # the location isnt outside the bounds of the image (can happen from rounding)
- y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
- x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
- # if the object is in a masked location, don't add it to detected objects
- if self.camera.mask[y_location][x_location] == [0]:
- return True
-
- return False
-
- def has_overlap(self, new_obj, obj, overlap=.7):
- # compute intersection rectangle with existing object and new objects region
- existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
- # compute intersection rectangle with new object and existing objects region
- new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
- # compute iou for the two intersection rectangles that were just computed
- iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
- # if intersection is greater than overlap
- if iou > overlap:
- return True
- else:
- return False
-
- def find_group(self, new_obj, groups):
- for index, group in enumerate(groups):
- for obj in group:
- if self.has_overlap(new_obj, obj):
- return index
- return None
- class ObjectTracker(threading.Thread):
- def __init__(self, camera, max_disappeared):
- threading.Thread.__init__(self)
- self.camera = camera
- self.tracked_objects = {}
- self.disappeared = {}
- self.max_disappeared = max_disappeared
-
- def run(self):
- prctl.set_name(self.__class__.__name__)
- while True:
- frame_time = self.camera.refined_frame_queue.get()
- self.match_and_update(self.camera.detected_objects[frame_time])
- self.camera.frame_tracked_queue.put(frame_time)
- def register(self, index, obj):
- id = f"{str(obj['frame_time'])}-{index}"
- obj['id'] = id
- self.tracked_objects[id] = obj
- self.disappeared[id] = 0
- def deregister(self, id):
- del self.disappeared[id]
- del self.tracked_objects[id]
-
- def update(self, id, new_obj):
- self.tracked_objects[id].update(new_obj)
- # TODO: am i missing anything? history?
- def match_and_update(self, new_objects):
- # check to see if the list of input bounding box rectangles
- # is empty
- if len(new_objects) == 0:
- # loop over any existing tracked objects and mark them
- # as disappeared
- for objectID in list(self.disappeared.keys()):
- self.disappeared[objectID] += 1
- # if we have reached a maximum number of consecutive
- # frames where a given object has been marked as
- # missing, deregister it
- if self.disappeared[objectID] > self.max_disappeared:
- self.deregister(objectID)
- # return early as there are no centroids or tracking info
- # to update
- return
-
- # group by name
- new_object_groups = defaultdict(lambda: [])
- for obj in new_objects:
- new_object_groups[obj['name']].append(obj)
-
- # track objects for each label type
- # TODO: this is going to miss deregistering objects that are not in the new groups
- for label, group in new_object_groups.items():
- current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
- current_ids = [o['id'] for o in current_objects]
- current_centroids = np.array([o['centroid'] for o in current_objects])
- # compute centroids
- for obj in group:
- centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
- centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
- obj['centroid'] = (centroid_x, centroid_y)
- if len(current_objects) == 0:
- for index, obj in enumerate(group):
- self.register(index, obj)
- return
-
- new_centroids = np.array([o['centroid'] for o in group])
- # compute the distance between each pair of tracked
- # centroids and new centroids, respectively -- our
- # goal will be to match each new centroid to an existing
- # object centroid
- D = dist.cdist(current_centroids, new_centroids)
- # in order to perform this matching we must (1) find the
- # smallest value in each row and then (2) sort the row
- # indexes based on their minimum values so that the row
- # with the smallest value is at the *front* of the index
- # list
- rows = D.min(axis=1).argsort()
- # next, we perform a similar process on the columns by
- # finding the smallest value in each column and then
- # sorting using the previously computed row index list
- cols = D.argmin(axis=1)[rows]
- # in order to determine if we need to update, register,
- # or deregister an object we need to keep track of which
- # of the rows and column indexes we have already examined
- usedRows = set()
- usedCols = set()
- # loop over the combination of the (row, column) index
- # tuples
- for (row, col) in zip(rows, cols):
- # if we have already examined either the row or
- # column value before, ignore it
- # val
- if row in usedRows or col in usedCols:
- continue
- # otherwise, grab the object ID for the current row,
- # set its new centroid, and reset the disappeared
- # counter
- objectID = current_ids[row]
- self.update(objectID, new_objects[col])
- self.disappeared[objectID] = 0
- # indicate that we have examined each of the row and
- # column indexes, respectively
- usedRows.add(row)
- usedCols.add(col)
- # compute both the row and column index we have NOT yet
- # examined
- unusedRows = set(range(0, D.shape[0])).difference(usedRows)
- unusedCols = set(range(0, D.shape[1])).difference(usedCols)
- # in the event that the number of object centroids is
- # equal or greater than the number of input centroids
- # we need to check and see if some of these objects have
- # potentially disappeared
- if D.shape[0] >= D.shape[1]:
- # loop over the unused row indexes
- for row in unusedRows:
- # grab the object ID for the corresponding row
- # index and increment the disappeared counter
- objectID = current_ids[row]
- self.disappeared[objectID] += 1
- # check to see if the number of consecutive
- # frames the object has been marked "disappeared"
- # for warrants deregistering the object
- if self.disappeared[objectID] > self.max_disappeared:
- self.deregister(objectID)
- # otherwise, if the number of input centroids is greater
- # than the number of existing object centroids we need to
- # register each new input centroid as a trackable object
- else:
- for col in unusedCols:
- self.register(col, new_objects[col])
- # Maintains the frame and object with the highest score
- class BestFrames(threading.Thread):
- def __init__(self, objects_parsed, recent_frames, detected_objects):
- threading.Thread.__init__(self)
- self.objects_parsed = objects_parsed
- self.recent_frames = recent_frames
- self.detected_objects = detected_objects
- self.best_objects = {}
- self.best_frames = {}
- def run(self):
- prctl.set_name("BestFrames")
- while True:
- # wait until objects have been parsed
- with self.objects_parsed:
- self.objects_parsed.wait()
- # make a copy of detected objects
- detected_objects = self.detected_objects.copy()
- for obj in itertools.chain.from_iterable(detected_objects.values()):
- if obj['name'] in self.best_objects:
- now = datetime.datetime.now().timestamp()
- # if the object is a higher score than the current best score
- # or the current object is more than 1 minute old, use the new object
- if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
- self.best_objects[obj['name']] = obj
- else:
- self.best_objects[obj['name']] = obj
-
- # make a copy of the recent frames
- recent_frames = self.recent_frames.copy()
- for name, obj in self.best_objects.items():
- if obj['frame_time'] in recent_frames:
- best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
- draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
- obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}")
-
- # print a timestamp
- time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
- cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
-
- self.best_frames[name] = best_frame
|