123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- import json
- import hashlib
- import datetime
- import time
- import copy
- import cv2
- import threading
- import queue
- import copy
- import numpy as np
- from collections import Counter, defaultdict
- import itertools
- import matplotlib.pyplot as plt
- from frigate.util import draw_box_with_label, SharedMemoryFrameManager
- from frigate.edgetpu import load_labels
- from typing import Callable, Dict
- from statistics import mean, median
- PATH_TO_LABELS = '/labelmap.txt'
- LABELS = load_labels(PATH_TO_LABELS)
- cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
- COLOR_MAP = {}
- for key, val in LABELS.items():
- COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
- def zone_filtered(obj, object_config):
- object_name = obj['label']
- if object_name in object_config:
- obj_settings = object_config[object_name]
- # if the min area is larger than the
- # detected object, don't add it to detected objects
- if obj_settings.get('min_area',-1) > obj['area']:
- return True
-
- # if the detected object is larger than the
- # max area, don't add it to detected objects
- if obj_settings.get('max_area', 24000000) < obj['area']:
- return True
- # if the score is lower than the threshold, skip
- if obj_settings.get('threshold', 0) > obj['computed_score']:
- return True
-
- return False
- # Maintains the state of a camera
- class CameraState():
- def __init__(self, name, config, frame_manager):
- self.name = name
- self.config = config
- self.frame_manager = frame_manager
- self.best_objects = {}
- self.object_status = defaultdict(lambda: 'OFF')
- self.tracked_objects = {}
- self.zone_objects = defaultdict(lambda: [])
- self._current_frame = np.zeros(self.config['frame_shape'], np.uint8)
- self.current_frame_lock = threading.Lock()
- self.current_frame_time = 0.0
- self.previous_frame_id = None
- self.callbacks = defaultdict(lambda: [])
- def get_current_frame(self):
- with self.current_frame_lock:
- return np.copy(self._current_frame)
- def false_positive(self, obj):
- # once a true positive, always a true positive
- if not obj.get('false_positive', True):
- return False
- threshold = self.config['objects'].get('filters', {}).get(obj['label'], {}).get('threshold', 0.85)
- if obj['computed_score'] < threshold:
- return True
- return False
- def compute_score(self, obj):
- scores = obj['score_history'][:]
- # pad with zeros if you dont have at least 3 scores
- if len(scores) < 3:
- scores += [0.0]*(3 - len(scores))
- return median(scores)
- def on(self, event_type: str, callback: Callable[[Dict], None]):
- self.callbacks[event_type].append(callback)
- def update(self, frame_time, tracked_objects):
- self.current_frame_time = frame_time
- # get the new frame and delete the old frame
- frame_id = f"{self.name}{frame_time}"
- with self.current_frame_lock:
- self._current_frame = self.frame_manager.get(frame_id, (self.config['frame_shape'][0]*3//2, self.config['frame_shape'][1]))
- if not self.previous_frame_id is None:
- self.frame_manager.delete(self.previous_frame_id)
- self.previous_frame_id = frame_id
- current_ids = tracked_objects.keys()
- previous_ids = self.tracked_objects.keys()
- removed_ids = list(set(previous_ids).difference(current_ids))
- new_ids = list(set(current_ids).difference(previous_ids))
- updated_ids = list(set(current_ids).intersection(previous_ids))
- for id in new_ids:
- self.tracked_objects[id] = tracked_objects[id]
- self.tracked_objects[id]['zones'] = []
- # start the score history
- self.tracked_objects[id]['score_history'] = [self.tracked_objects[id]['score']]
- # calculate if this is a false positive
- self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
- self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
- # call event handlers
- for c in self.callbacks['start']:
- c(self.name, tracked_objects[id])
-
- for id in updated_ids:
- self.tracked_objects[id].update(tracked_objects[id])
- # if the object is not in the current frame, add a 0.0 to the score history
- if self.tracked_objects[id]['frame_time'] != self.current_frame_time:
- self.tracked_objects[id]['score_history'].append(0.0)
- else:
- self.tracked_objects[id]['score_history'].append(self.tracked_objects[id]['score'])
- # only keep the last 10 scores
- if len(self.tracked_objects[id]['score_history']) > 10:
- self.tracked_objects[id]['score_history'] = self.tracked_objects[id]['score_history'][-10:]
- # calculate if this is a false positive
- self.tracked_objects[id]['computed_score'] = self.compute_score(self.tracked_objects[id])
- self.tracked_objects[id]['false_positive'] = self.false_positive(self.tracked_objects[id])
- # call event handlers
- for c in self.callbacks['update']:
- c(self.name, self.tracked_objects[id])
-
- for id in removed_ids:
- # publish events to mqtt
- self.tracked_objects[id]['end_time'] = frame_time
- for c in self.callbacks['end']:
- c(self.name, self.tracked_objects[id])
- del self.tracked_objects[id]
- # check to see if the objects are in any zones
- for obj in self.tracked_objects.values():
- current_zones = []
- bottom_center = (obj['centroid'][0], obj['box'][3])
- # check each zone
- for name, zone in self.config['zones'].items():
- contour = zone['contour']
- # check if the object is in the zone and not filtered
- if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0
- and not zone_filtered(obj, zone.get('filters', {}))):
- current_zones.append(name)
- obj['zones'] = current_zones
-
- # draw on the frame
- if not self._current_frame is None:
- # draw the bounding boxes on the frame
- for obj in self.tracked_objects.values():
- thickness = 2
- color = COLOR_MAP[obj['label']]
-
- if obj['frame_time'] != frame_time:
- thickness = 1
- color = (255,0,0)
- # draw the bounding boxes on the frame
- box = obj['box']
- draw_box_with_label(self._current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
- # draw the regions on the frame
- region = obj['region']
- cv2.rectangle(self._current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
-
- if self.config['snapshots']['show_timestamp']:
- time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
- cv2.putText(self._current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
- if self.config['snapshots']['draw_zones']:
- for name, zone in self.config['zones'].items():
- thickness = 8 if any([name in obj['zones'] for obj in self.tracked_objects.values()]) else 2
- cv2.drawContours(self._current_frame, [zone['contour']], -1, zone['color'], thickness)
- # maintain best objects
- for obj in self.tracked_objects.values():
- object_type = obj['label']
- # if the object wasn't seen on the current frame, skip it
- if obj['frame_time'] != self.current_frame_time or obj['false_positive']:
- continue
- obj_copy = copy.deepcopy(obj)
- if object_type in self.best_objects:
- current_best = self.best_objects[object_type]
- now = datetime.datetime.now().timestamp()
- # if the object is a higher score than the current best score
- # or the current object is older than desired, use the new object
- if obj_copy['score'] > current_best['score'] or (now - current_best['frame_time']) > self.config.get('best_image_timeout', 60):
- obj_copy['frame'] = np.copy(self._current_frame)
- self.best_objects[object_type] = obj_copy
- for c in self.callbacks['snapshot']:
- c(self.name, self.best_objects[object_type])
- else:
- obj_copy['frame'] = np.copy(self._current_frame)
- self.best_objects[object_type] = obj_copy
- for c in self.callbacks['snapshot']:
- c(self.name, self.best_objects[object_type])
-
- # update overall camera state for each object type
- obj_counter = Counter()
- for obj in self.tracked_objects.values():
- if not obj['false_positive']:
- obj_counter[obj['label']] += 1
-
- # report on detected objects
- for obj_name, count in obj_counter.items():
- new_status = 'ON' if count > 0 else 'OFF'
- if new_status != self.object_status[obj_name]:
- self.object_status[obj_name] = new_status
- for c in self.callbacks['object_status']:
- c(self.name, obj_name, new_status)
- # expire any objects that are ON and no longer detected
- expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
- for obj_name in expired_objects:
- self.object_status[obj_name] = 'OFF'
- for c in self.callbacks['object_status']:
- c(self.name, obj_name, 'OFF')
- for c in self.callbacks['snapshot']:
- c(self.name, self.best_objects[obj_name])
- class TrackedObjectProcessor(threading.Thread):
- def __init__(self, camera_config, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
- threading.Thread.__init__(self)
- self.camera_config = camera_config
- self.client = client
- self.topic_prefix = topic_prefix
- self.tracked_objects_queue = tracked_objects_queue
- self.event_queue = event_queue
- self.stop_event = stop_event
- self.camera_states: Dict[str, CameraState] = {}
- self.frame_manager = SharedMemoryFrameManager()
- def start(camera, obj):
- # publish events to mqtt
- self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj), retain=False)
- self.event_queue.put(('start', camera, obj))
- def update(camera, obj):
- pass
- def end(camera, obj):
- self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj), retain=False)
- self.event_queue.put(('end', camera, obj))
-
- def snapshot(camera, obj):
- if not 'frame' in obj:
- return
- best_frame = cv2.cvtColor(obj['frame'], cv2.COLOR_RGB2BGR)
- mqtt_config = self.camera_config[camera].get('mqtt', {'crop_to_region': False})
- if mqtt_config.get('crop_to_region'):
- region = obj['region']
- best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
- if 'snapshot_height' in mqtt_config:
- height = int(mqtt_config['snapshot_height'])
- width = int(height*best_frame.shape[1]/best_frame.shape[0])
- best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
- ret, jpg = cv2.imencode('.jpg', best_frame)
- if ret:
- jpg_bytes = jpg.tobytes()
- self.client.publish(f"{self.topic_prefix}/{camera}/{obj['label']}/snapshot", jpg_bytes, retain=True)
-
- def object_status(camera, object_name, status):
- self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
- for camera in self.camera_config.keys():
- camera_state = CameraState(camera, self.camera_config[camera], self.frame_manager)
- camera_state.on('start', start)
- camera_state.on('update', update)
- camera_state.on('end', end)
- camera_state.on('snapshot', snapshot)
- camera_state.on('object_status', object_status)
- self.camera_states[camera] = camera_state
- self.camera_data = defaultdict(lambda: {
- 'best_objects': {},
- 'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
- 'tracked_objects': {},
- 'current_frame': np.zeros((720,1280,3), np.uint8),
- 'current_frame_time': 0.0,
- 'object_id': None
- })
- # {
- # 'zone_name': {
- # 'person': ['camera_1', 'camera_2']
- # }
- # }
- self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
- # set colors for zones
- all_zone_names = set([zone for config in self.camera_config.values() for zone in config['zones'].keys()])
- zone_colors = {}
- colors = plt.cm.get_cmap('tab10', len(all_zone_names))
- for i, zone in enumerate(all_zone_names):
- zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
- # create zone contours
- for camera_config in self.camera_config.values():
- for zone_name, zone_config in camera_config['zones'].items():
- zone_config['color'] = zone_colors[zone_name]
- coordinates = zone_config['coordinates']
- if isinstance(coordinates, list):
- zone_config['contour'] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
- elif isinstance(coordinates, str):
- points = coordinates.split(',')
- zone_config['contour'] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
- else:
- print(f"Unable to parse zone coordinates for {zone_name} - {camera}")
-
- def get_best(self, camera, label):
- best_objects = self.camera_states[camera].best_objects
- if label in best_objects:
- return best_objects[label]
- else:
- return {}
-
- def get_current_frame(self, camera):
- return self.camera_states[camera].get_current_frame()
- def run(self):
- while True:
- if self.stop_event.is_set():
- print(f"Exiting object processor...")
- break
- try:
- camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
- except queue.Empty:
- continue
- camera_state = self.camera_states[camera]
- camera_state.update(frame_time, current_tracked_objects)
- # update zone status for each label
- for zone in camera_state.config['zones'].keys():
- # get labels for current camera and all labels in current zone
- labels_for_camera = set([obj['label'] for obj in camera_state.tracked_objects.values() if zone in obj['zones'] and not obj['false_positive']])
- labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
- # for each label in zone
- for label in labels_to_check:
- camera_list = self.zone_data[zone][label]
- # remove or add the camera to the list for the current label
- previous_state = len(camera_list) > 0
- if label in labels_for_camera:
- camera_list.add(camera_state.name)
- elif camera_state.name in camera_list:
- camera_list.remove(camera_state.name)
- new_state = len(camera_list) > 0
- # if the value is changing, send over MQTT
- if previous_state == False and new_state == True:
- self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
- elif previous_state == True and new_state == False:
- self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
|