detect_objects.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. import os
  2. import cv2
  3. import imutils
  4. import time
  5. import datetime
  6. import ctypes
  7. import logging
  8. import multiprocessing as mp
  9. import threading
  10. import json
  11. from contextlib import closing
  12. import numpy as np
  13. import tensorflow as tf
  14. from object_detection.utils import label_map_util
  15. from object_detection.utils import visualization_utils as vis_util
  16. from flask import Flask, Response, make_response
  17. import paho.mqtt.client as mqtt
  18. RTSP_URL = os.getenv('RTSP_URL')
  19. # Path to frozen detection graph. This is the actual model that is used for the object detection.
  20. PATH_TO_CKPT = '/frozen_inference_graph.pb'
  21. # List of the strings that is used to add correct label for each box.
  22. PATH_TO_LABELS = '/label_map.pbtext'
  23. MQTT_HOST = os.getenv('MQTT_HOST')
  24. MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
  25. MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
  26. # TODO: make dynamic?
  27. NUM_CLASSES = 90
  28. # REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
  29. # REGIONS = "400,350,250,50"
  30. REGIONS = os.getenv('REGIONS')
  31. DETECTED_OBJECTS = []
  32. # Loading label map
  33. label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
  34. categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
  35. use_display_name=True)
  36. category_index = label_map_util.create_category_index(categories)
  37. def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
  38. # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  39. image_np_expanded = np.expand_dims(cropped_frame, axis=0)
  40. image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
  41. # Each box represents a part of the image where a particular object was detected.
  42. boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
  43. # Each score represent how level of confidence for each of the objects.
  44. # Score is shown on the result image, together with the class label.
  45. scores = detection_graph.get_tensor_by_name('detection_scores:0')
  46. classes = detection_graph.get_tensor_by_name('detection_classes:0')
  47. num_detections = detection_graph.get_tensor_by_name('num_detections:0')
  48. # Actual detection.
  49. (boxes, scores, classes, num_detections) = sess.run(
  50. [boxes, scores, classes, num_detections],
  51. feed_dict={image_tensor: image_np_expanded})
  52. if debug:
  53. if len([category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.5]) > 0:
  54. vis_util.visualize_boxes_and_labels_on_image_array(
  55. cropped_frame,
  56. np.squeeze(boxes),
  57. np.squeeze(classes).astype(np.int32),
  58. np.squeeze(scores),
  59. category_index,
  60. use_normalized_coordinates=True,
  61. line_thickness=4)
  62. cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
  63. # build an array of detected objects
  64. objects = []
  65. for index, value in enumerate(classes[0]):
  66. score = scores[0, index]
  67. if score > 0.5:
  68. box = boxes[0, index].tolist()
  69. box[0] = (box[0] * region_size) + region_y_offset
  70. box[1] = (box[1] * region_size) + region_x_offset
  71. box[2] = (box[2] * region_size) + region_y_offset
  72. box[3] = (box[3] * region_size) + region_x_offset
  73. objects += [value, scores[0, index]] + box
  74. # only get the first 10 objects
  75. if len(objects) == 60:
  76. break
  77. return objects
  78. class ObjectParser(threading.Thread):
  79. def __init__(self, object_arrays):
  80. threading.Thread.__init__(self)
  81. self._object_arrays = object_arrays
  82. def run(self):
  83. global DETECTED_OBJECTS
  84. while True:
  85. detected_objects = []
  86. for object_array in self._object_arrays:
  87. object_index = 0
  88. while(object_index < 60 and object_array[object_index] > 0):
  89. object_class = object_array[object_index]
  90. detected_objects.append({
  91. 'name': str(category_index.get(object_class).get('name')),
  92. 'score': object_array[object_index+1],
  93. 'ymin': int(object_array[object_index+2]),
  94. 'xmin': int(object_array[object_index+3]),
  95. 'ymax': int(object_array[object_index+4]),
  96. 'xmax': int(object_array[object_index+5])
  97. })
  98. object_index += 6
  99. DETECTED_OBJECTS = detected_objects
  100. time.sleep(0.1)
  101. class MqttPublisher(threading.Thread):
  102. def __init__(self, host, topic_prefix, object_classes, motion_flags):
  103. threading.Thread.__init__(self)
  104. self.client = mqtt.Client()
  105. self.client.will_set(topic_prefix+'/available', payload='offline', qos=1, retain=True)
  106. self.client.connect(host, 1883, 60)
  107. self.client.loop_start()
  108. self.client.publish(topic_prefix+'/available', 'online', retain=True)
  109. self.topic_prefix = topic_prefix
  110. self.object_classes = object_classes
  111. self.motion_flags = motion_flags
  112. def run(self):
  113. global DETECTED_OBJECTS
  114. last_sent_payload = ""
  115. last_motion = ""
  116. while True:
  117. # initialize the payload
  118. payload = {}
  119. for obj in self.object_classes:
  120. payload[obj] = []
  121. # loop over detected objects and populate
  122. # the payload
  123. detected_objects = DETECTED_OBJECTS.copy()
  124. for obj in detected_objects:
  125. if obj['name'] in self.object_classes:
  126. payload[obj['name']].append(obj)
  127. # send message for objects
  128. new_payload = json.dumps(payload, sort_keys=True)
  129. if new_payload != last_sent_payload:
  130. last_sent_payload = new_payload
  131. self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
  132. # send message for motion
  133. motion_status = 'OFF'
  134. if any(obj.is_set() for obj in self.motion_flags):
  135. motion_status = 'ON'
  136. if motion_status != last_motion:
  137. last_motion = motion_status
  138. self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
  139. time.sleep(0.1)
  140. def main():
  141. # Parse selected regions
  142. regions = []
  143. for region_string in REGIONS.split(':'):
  144. region_parts = region_string.split(',')
  145. regions.append({
  146. 'size': int(region_parts[0]),
  147. 'x_offset': int(region_parts[1]),
  148. 'y_offset': int(region_parts[2]),
  149. 'min_object_size': int(region_parts[3]),
  150. # Event for motion detection signaling
  151. 'motion_detected': mp.Event(),
  152. # create shared array for storing 10 detected objects
  153. # note: this must be a double even though the value you are storing
  154. # is a float. otherwise it stops updating the value in shared
  155. # memory. probably something to do with the size of the memory block
  156. 'output_array': mp.Array(ctypes.c_double, 6*10)
  157. })
  158. # capture a single frame and check the frame shape so the correct array
  159. # size can be allocated in memory
  160. video = cv2.VideoCapture(RTSP_URL)
  161. ret, frame = video.read()
  162. if ret:
  163. frame_shape = frame.shape
  164. else:
  165. print("Unable to capture video stream")
  166. exit(1)
  167. video.release()
  168. # compute the flattened array length from the array shape
  169. flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
  170. # create shared array for storing the full frame image data
  171. shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
  172. # create shared value for storing the frame_time
  173. shared_frame_time = mp.Value('d', 0.0)
  174. # Lock to control access to the frame while writing
  175. frame_lock = mp.Lock()
  176. # Condition for notifying that a new frame is ready
  177. frame_ready = mp.Condition()
  178. # shape current frame so it can be treated as an image
  179. frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
  180. capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
  181. shared_frame_time, frame_lock, frame_ready, frame_shape))
  182. capture_process.daemon = True
  183. detection_processes = []
  184. motion_processes = []
  185. for region in regions:
  186. detection_process = mp.Process(target=process_frames, args=(shared_arr,
  187. region['output_array'],
  188. shared_frame_time,
  189. frame_lock, frame_ready,
  190. region['motion_detected'],
  191. frame_shape,
  192. region['size'], region['x_offset'], region['y_offset']))
  193. detection_process.daemon = True
  194. detection_processes.append(detection_process)
  195. motion_process = mp.Process(target=detect_motion, args=(shared_arr,
  196. shared_frame_time,
  197. frame_lock, frame_ready,
  198. region['motion_detected'],
  199. frame_shape,
  200. region['size'], region['x_offset'], region['y_offset'],
  201. region['min_object_size'],
  202. True))
  203. motion_process.daemon = True
  204. motion_processes.append(motion_process)
  205. object_parser = ObjectParser([region['output_array'] for region in regions])
  206. object_parser.start()
  207. mqtt_publisher = MqttPublisher(MQTT_HOST, MQTT_TOPIC_PREFIX,
  208. MQTT_OBJECT_CLASSES.split(','),
  209. [region['motion_detected'] for region in regions])
  210. mqtt_publisher.start()
  211. capture_process.start()
  212. print("capture_process pid ", capture_process.pid)
  213. for detection_process in detection_processes:
  214. detection_process.start()
  215. print("detection_process pid ", detection_process.pid)
  216. for motion_process in motion_processes:
  217. motion_process.start()
  218. print("motion_process pid ", motion_process.pid)
  219. app = Flask(__name__)
  220. @app.route('/')
  221. def index():
  222. # return a multipart response
  223. return Response(imagestream(),
  224. mimetype='multipart/x-mixed-replace; boundary=frame')
  225. def imagestream():
  226. global DETECTED_OBJECTS
  227. while True:
  228. # max out at 5 FPS
  229. time.sleep(0.2)
  230. # make a copy of the current detected objects
  231. detected_objects = DETECTED_OBJECTS.copy()
  232. # lock and make a copy of the current frame
  233. with frame_lock:
  234. frame = frame_arr.copy()
  235. # convert to RGB for drawing
  236. frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
  237. # draw the bounding boxes on the screen
  238. for obj in detected_objects:
  239. vis_util.draw_bounding_box_on_image_array(frame,
  240. obj['ymin'],
  241. obj['xmin'],
  242. obj['ymax'],
  243. obj['xmax'],
  244. color='red',
  245. thickness=2,
  246. display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
  247. use_normalized_coordinates=False)
  248. for region in regions:
  249. color = (255,255,255)
  250. if region['motion_detected'].is_set():
  251. color = (0,255,0)
  252. cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
  253. (region['x_offset']+region['size'], region['y_offset']+region['size']),
  254. color, 2)
  255. cv2.putText(frame, datetime.datetime.now().strftime("%H:%M:%S"), (1125, 20),
  256. cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
  257. # convert back to BGR
  258. frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
  259. # encode the image into a jpg
  260. ret, jpg = cv2.imencode('.jpg', frame)
  261. yield (b'--frame\r\n'
  262. b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
  263. app.run(host='0.0.0.0', debug=False)
  264. capture_process.join()
  265. for detection_process in detection_processes:
  266. detection_process.join()
  267. for motion_process in motion_processes:
  268. motion_process.join()
  269. object_parser.join()
  270. mqtt_publisher.join()
  271. # convert shared memory array into numpy array
  272. def tonumpyarray(mp_arr):
  273. return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
  274. # fetch the frames as fast a possible, only decoding the frames when the
  275. # detection_process has consumed the current frame
  276. def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape):
  277. # convert shared memory array into numpy and shape into image array
  278. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  279. # start the video capture
  280. video = cv2.VideoCapture(RTSP_URL)
  281. # keep the buffer small so we minimize old data
  282. video.set(cv2.CAP_PROP_BUFFERSIZE,1)
  283. while True:
  284. # grab the frame, but dont decode it yet
  285. ret = video.grab()
  286. # snapshot the time the frame was grabbed
  287. frame_time = datetime.datetime.now()
  288. if ret:
  289. # go ahead and decode the current frame
  290. ret, frame = video.retrieve()
  291. if ret:
  292. # Lock access and update frame
  293. with frame_lock:
  294. arr[:] = frame
  295. shared_frame_time.value = frame_time.timestamp()
  296. # Notify with the condition that a new frame is ready
  297. with frame_ready:
  298. frame_ready.notify_all()
  299. video.release()
  300. # do the actual object detection
  301. def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, frame_shape, region_size, region_x_offset, region_y_offset):
  302. debug = True
  303. # shape shared input array into frame for processing
  304. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  305. # Load a (frozen) Tensorflow model into memory before the processing loop
  306. detection_graph = tf.Graph()
  307. with detection_graph.as_default():
  308. od_graph_def = tf.GraphDef()
  309. with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
  310. serialized_graph = fid.read()
  311. od_graph_def.ParseFromString(serialized_graph)
  312. tf.import_graph_def(od_graph_def, name='')
  313. sess = tf.Session(graph=detection_graph)
  314. frame_time = 0.0
  315. while True:
  316. now = datetime.datetime.now().timestamp()
  317. # wait until motion is detected
  318. motion_detected.wait()
  319. with frame_ready:
  320. # if there isnt a frame ready for processing or it is old, wait for a signal
  321. if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
  322. frame_ready.wait()
  323. # make a copy of the cropped frame
  324. with frame_lock:
  325. cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
  326. frame_time = shared_frame_time.value
  327. # convert to RGB
  328. cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
  329. # do the object detection
  330. objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, True)
  331. # copy the detected objects to the output array, filling the array when needed
  332. shared_output_arr[:] = objects + [0.0] * (60-len(objects))
  333. # do the actual motion detection
  334. def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
  335. # shape shared input array into frame for processing
  336. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  337. avg_frame = None
  338. last_motion = -1
  339. frame_time = 0.0
  340. motion_frames = 0
  341. while True:
  342. now = datetime.datetime.now().timestamp()
  343. # if it has been long enough since the last motion, clear the flag
  344. if last_motion > 0 and (now - last_motion) > 2:
  345. last_motion = -1
  346. motion_detected.clear()
  347. with frame_ready:
  348. # if there isnt a frame ready for processing or it is old, wait for a signal
  349. if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
  350. frame_ready.wait()
  351. # lock and make a copy of the cropped frame
  352. with frame_lock:
  353. cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
  354. frame_time = shared_frame_time.value
  355. # convert to grayscale
  356. gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
  357. # apply gaussian blur
  358. gray = cv2.GaussianBlur(gray, (21, 21), 0)
  359. if avg_frame is None:
  360. avg_frame = gray.copy().astype("float")
  361. continue
  362. # look at the delta from the avg_frame
  363. cv2.accumulateWeighted(gray, avg_frame, 0.5)
  364. frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
  365. thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
  366. # dilate the thresholded image to fill in holes, then find contours
  367. # on thresholded image
  368. thresh = cv2.dilate(thresh, None, iterations=2)
  369. cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
  370. cv2.CHAIN_APPROX_SIMPLE)
  371. cnts = imutils.grab_contours(cnts)
  372. # if there are no contours, there is no motion
  373. if len(cnts) < 1:
  374. motion_frames = 0
  375. continue
  376. motion_found = False
  377. # loop over the contours
  378. for c in cnts:
  379. # if the contour is big enough, count it as motion
  380. contour_area = cv2.contourArea(c)
  381. if contour_area > min_motion_area:
  382. motion_found = True
  383. if debug:
  384. cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
  385. x, y, w, h = cv2.boundingRect(c)
  386. cv2.putText(cropped_frame, str(contour_area), (x, y),
  387. cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
  388. else:
  389. break
  390. if motion_found:
  391. motion_frames += 1
  392. # if there have been enough consecutive motion frames, report motion
  393. if motion_frames >= 3:
  394. motion_detected.set()
  395. last_motion = now
  396. else:
  397. motion_frames = 0
  398. if debug and motion_frames > 0:
  399. cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
  400. if __name__ == '__main__':
  401. mp.freeze_support()
  402. main()