123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- import os
- import datetime
- import multiprocessing as mp
- import numpy as np
- import SharedArray as sa
- import tflite_runtime.interpreter as tflite
- from tflite_runtime.interpreter import load_delegate
- from frigate.util import EventsPerSecond
- def load_labels(path, encoding='utf-8'):
- """Loads labels from file (with or without index numbers).
- Args:
- path: path to label file.
- encoding: label file encoding.
- Returns:
- Dictionary mapping indices to labels.
- """
- with open(path, 'r', encoding=encoding) as f:
- lines = f.readlines()
- if not lines:
- return {}
- if lines[0].split(' ', maxsplit=1)[0].isdigit():
- pairs = [line.split(' ', maxsplit=1) for line in lines]
- return {int(index): label.strip() for index, label in pairs}
- else:
- return {index: line.strip() for index, line in enumerate(lines)}
- class ObjectDetector():
- def __init__(self, model_file):
- edge_tpu_delegate = None
- try:
- edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
- except ValueError:
- print("No EdgeTPU detected. Falling back to CPU.")
-
- if edge_tpu_delegate is None:
- self.interpreter = tflite.Interpreter(
- model_path=model_file)
- else:
- self.interpreter = tflite.Interpreter(
- model_path=model_file,
- experimental_delegates=[edge_tpu_delegate])
-
- self.interpreter.allocate_tensors()
- self.tensor_input_details = self.interpreter.get_input_details()
- self.tensor_output_details = self.interpreter.get_output_details()
-
- def detect_raw(self, tensor_input):
- self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
- self.interpreter.invoke()
- boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
- label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
- scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
- detections = np.zeros((20,6), np.float32)
- for i, score in enumerate(scores):
- detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
-
- return detections
- class EdgeTPUProcess():
- def __init__(self, model):
- # TODO: see if we can use the plasma store with a queue and maintain the same speeds
- try:
- sa.delete("frame")
- except:
- pass
- try:
- sa.delete("detections")
- except:
- pass
- self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
- self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
- self.detect_lock = mp.Lock()
- self.detect_ready = mp.Event()
- self.frame_ready = mp.Event()
- self.fps = mp.Value('d', 0.0)
- self.avg_inference_speed = mp.Value('d', 10.0)
- def run_detector(model, detect_ready, frame_ready, fps, avg_speed):
- print(f"Starting detection process: {os.getpid()}")
- object_detector = ObjectDetector(model)
- input_frame = sa.attach("frame")
- detections = sa.attach("detections")
- fps_tracker = EventsPerSecond()
- fps_tracker.start()
- while True:
- # wait until a frame is ready
- frame_ready.wait()
- start = datetime.datetime.now().timestamp()
- # signal that the process is busy
- frame_ready.clear()
- detections[:] = object_detector.detect_raw(input_frame)
- # signal that the process is ready to detect
- detect_ready.set()
- fps_tracker.update()
- fps.value = fps_tracker.eps()
- duration = datetime.datetime.now().timestamp()-start
- avg_speed.value = (avg_speed.value*9 + duration)/10
- self.detect_process = mp.Process(target=run_detector, args=(model, self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
- self.detect_process.daemon = True
- self.detect_process.start()
- class RemoteObjectDetector():
- def __init__(self, labels, detect_lock, detect_ready, frame_ready):
- self.labels = load_labels(labels)
- self.input_frame = sa.attach("frame")
- self.detections = sa.attach("detections")
- self.detect_lock = detect_lock
- self.detect_ready = detect_ready
- self.frame_ready = frame_ready
-
- def detect(self, tensor_input, threshold=.4):
- detections = []
- with self.detect_lock:
- self.input_frame[:] = tensor_input
- # unset detections and signal that a frame is ready
- self.detect_ready.clear()
- self.frame_ready.set()
- # wait until the detection process is finished,
- self.detect_ready.wait()
- for d in self.detections:
- if d[1] < threshold:
- break
- detections.append((
- self.labels[int(d[0])],
- float(d[1]),
- (d[2], d[3], d[4], d[5])
- ))
- return detections
|