123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import os
- import cv2
- import time
- import datetime
- import ctypes
- import logging
- import multiprocessing as mp
- from contextlib import closing
- import numpy as np
- import tensorflow as tf
- from object_detection.utils import label_map_util
- from object_detection.utils import visualization_utils as vis_util
- from flask import Flask, Response, make_response
- RTSP_URL = os.getenv('RTSP_URL')
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
- PATH_TO_CKPT = '/frozen_inference_graph.pb'
- # List of the strings that is used to add correct label for each box.
- PATH_TO_LABELS = '/label_map.pbtext'
- # TODO: make dynamic?
- NUM_CLASSES = 90
- # Loading label map
- label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
- categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
- use_display_name=True)
- category_index = label_map_util.create_category_index(categories)
- def detect_objects(image_np, sess, detection_graph):
- # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
- image_np_expanded = np.expand_dims(image_np, axis=0)
- image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
- # Each box represents a part of the image where a particular object was detected.
- boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
- # Each score represent how level of confidence for each of the objects.
- # Score is shown on the result image, together with the class label.
- scores = detection_graph.get_tensor_by_name('detection_scores:0')
- classes = detection_graph.get_tensor_by_name('detection_classes:0')
- num_detections = detection_graph.get_tensor_by_name('num_detections:0')
- # Actual detection.
- (boxes, scores, classes, num_detections) = sess.run(
- [boxes, scores, classes, num_detections],
- feed_dict={image_tensor: image_np_expanded})
- # build an array of detected objects
- objects = []
- for index, value in enumerate(classes[0]):
- object_dict = {}
- if scores[0, index] > 0.5:
- object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
- scores[0, index]
- objects.append(object_dict)
- # draw boxes for detected objects on image
- vis_util.visualize_boxes_and_labels_on_image_array(
- image_np,
- np.squeeze(boxes),
- np.squeeze(classes).astype(np.int32),
- np.squeeze(scores),
- category_index,
- use_normalized_coordinates=True,
- line_thickness=4)
- return objects, image_np
- def main():
- # capture a single frame and check the frame shape so the correct array
- # size can be allocated in memory
- video = cv2.VideoCapture(RTSP_URL)
- ret, frame = video.read()
- if ret:
- frame_shape = frame.shape
- else:
- print("Unable to capture video stream")
- exit(1)
- video.release()
- # create shared value for storing the time the frame was captured
- # note: this must be a double even though the value you are storing
- # is a float. otherwise it stops updating the value in shared
- # memory. probably something to do with the size of the memory block
- shared_frame_time = mp.Value('d', 0.0)
- # compute the flattened array length from the array shape
- flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
- # create shared array for passing the image data from capture to detect_objects
- shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
- # create shared array for passing the image data from detect_objects to flask
- shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
- # create a numpy array with the image shape from the shared memory array
- # this is used by flask to output an mjpeg stream
- frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
- capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
- capture_process.daemon = True
- detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape))
- detection_process.daemon = True
- capture_process.start()
- print("capture_process pid ", capture_process.pid)
- detection_process.start()
- print("detection_process pid ", detection_process.pid)
- app = Flask(__name__)
- @app.route('/')
- def index():
- # return a multipart response
- return Response(imagestream(),
- mimetype='multipart/x-mixed-replace; boundary=frame')
- def imagestream():
- while True:
- # max out at 5 FPS
- time.sleep(0.2)
- # convert back to BGR
- frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
- # encode the image into a jpg
- ret, jpg = cv2.imencode('.jpg', frame_bgr)
- yield (b'--frame\r\n'
- b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
- app.run(host='0.0.0.0', debug=False)
- capture_process.join()
- detection_process.join()
- # convert shared memory array into numpy array
- def tonumpyarray(mp_arr):
- return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
- # fetch the frames as fast a possible, only decoding the frames when the
- # detection_process has consumed the current frame
- def fetch_frames(shared_arr, shared_frame_time, frame_shape):
- # convert shared memory array into numpy and shape into image array
- arr = tonumpyarray(shared_arr).reshape(frame_shape)
- # start the video capture
- video = cv2.VideoCapture(RTSP_URL)
- # keep the buffer small so we minimize old data
- video.set(cv2.CAP_PROP_BUFFERSIZE,1)
- while True:
- # grab the frame, but dont decode it yet
- ret = video.grab()
- # snapshot the time the frame was grabbed
- frame_time = datetime.datetime.now()
- if ret:
- # if the detection_process is ready for the next frame decode it
- # otherwise skip this frame and move onto the next one
- if shared_frame_time.value == 0.0:
- # go ahead and decode the current frame
- ret, frame = video.retrieve()
- if ret:
- # copy the frame into the numpy array
- arr[:] = frame
- # signal to the detection_process by setting the shared_frame_time
- shared_frame_time.value = frame_time.timestamp()
-
- video.release()
- # do the actual object detection
- def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape):
- # shape shared input array into frame for processing
- arr = tonumpyarray(shared_arr).reshape(frame_shape)
- # shape shared output array into frame so it can be copied into
- output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
- # Load a (frozen) Tensorflow model into memory before the processing loop
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
- sess = tf.Session(graph=detection_graph)
- no_frames_available = -1
- while True:
- # if there isnt a frame ready for processing
- if shared_frame_time.value == 0.0:
- # save the first time there were no frames available
- if no_frames_available == -1:
- no_frames_available = datetime.datetime.now().timestamp()
- # if there havent been any frames available in 30 seconds,
- # sleep to avoid using so much cpu if the camera feed is down
- if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
- time.sleep(1)
- print("sleeping because no frames have been available in a while")
- continue
-
- # we got a valid frame, so reset the timer
- no_frames_available = -1
- # if the frame is more than 0.5 second old, discard it
- if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
- # signal that we need a new frame
- shared_frame_time.value = 0.0
- continue
-
- # make a copy of the frame
- frame = arr.copy()
- frame_time = shared_frame_time.value
- # signal that the frame has been used so a new one will be ready
- shared_frame_time.value = 0.0
- # convert to RGB
- frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- # do the object detection
- objects, frame_overlay = detect_objects(frame_rgb, sess, detection_graph)
- # copy the output frame with the bounding boxes to the output array
- output_arr[:] = frame_overlay
- if(len(objects) > 0):
- print(objects)
- if __name__ == '__main__':
- mp.freeze_support()
- main()
|