123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- import os
- import datetime
- import hashlib
- import multiprocessing as mp
- from abc import ABC, abstractmethod
- import numpy as np
- import pyarrow.plasma as plasma
- import tflite_runtime.interpreter as tflite
- from tflite_runtime.interpreter import load_delegate
- from frigate.util import EventsPerSecond, listen
- def load_labels(path, encoding='utf-8'):
- """Loads labels from file (with or without index numbers).
- Args:
- path: path to label file.
- encoding: label file encoding.
- Returns:
- Dictionary mapping indices to labels.
- """
- with open(path, 'r', encoding=encoding) as f:
- lines = f.readlines()
- if not lines:
- return {}
- if lines[0].split(' ', maxsplit=1)[0].isdigit():
- pairs = [line.split(' ', maxsplit=1) for line in lines]
- return {int(index): label.strip() for index, label in pairs}
- else:
- return {index: line.strip() for index, line in enumerate(lines)}
- class ObjectDetector(ABC):
- @abstractmethod
- def detect(self, tensor_input, threshold = .4):
- pass
- class LocalObjectDetector(ObjectDetector):
- def __init__(self, tf_device=None, labels=None):
- self.fps = EventsPerSecond()
- if labels is None:
- self.labels = {}
- else:
- self.labels = load_labels(labels)
- device_config = {"device": "usb"}
- if not tf_device is None:
- device_config = {"device": tf_device}
- edge_tpu_delegate = None
- try:
- print(f"Attempting to load TPU as {device_config['device']}")
- edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
- print("TPU found")
- except ValueError:
- try:
- print(f"Attempting to load TPU as pci:0")
- edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', {"device": "pci:0"})
- print("PCIe TPU found")
- except ValueError:
- print("No EdgeTPU detected. Falling back to CPU.")
-
- if edge_tpu_delegate is None:
- self.interpreter = tflite.Interpreter(
- model_path='/cpu_model.tflite')
- else:
- self.interpreter = tflite.Interpreter(
- model_path='/edgetpu_model.tflite',
- experimental_delegates=[edge_tpu_delegate])
-
- self.interpreter.allocate_tensors()
- self.tensor_input_details = self.interpreter.get_input_details()
- self.tensor_output_details = self.interpreter.get_output_details()
-
- def detect(self, tensor_input, threshold=.4):
- detections = []
- raw_detections = self.detect_raw(tensor_input)
- for d in raw_detections:
- if d[1] < threshold:
- break
- detections.append((
- self.labels[int(d[0])],
- float(d[1]),
- (d[2], d[3], d[4], d[5])
- ))
- self.fps.update()
- return detections
- def detect_raw(self, tensor_input):
- self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
- self.interpreter.invoke()
- boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
- label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
- scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
- detections = np.zeros((20,6), np.float32)
- for i, score in enumerate(scores):
- detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
-
- return detections
- def run_detector(detection_queue, avg_speed, start, tf_device):
- print(f"Starting detection process: {os.getpid()}")
- listen()
- plasma_client = plasma.connect("/tmp/plasma")
- object_detector = LocalObjectDetector(tf_device=tf_device)
- while True:
- object_id_str = detection_queue.get()
- object_id_hash = hashlib.sha1(str.encode(object_id_str))
- object_id = plasma.ObjectID(object_id_hash.digest())
- object_id_out = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{object_id_str}")).digest())
- input_frame = plasma_client.get(object_id, timeout_ms=0)
- if input_frame is plasma.ObjectNotAvailable:
- continue
- # detect and put the output in the plasma store
- start.value = datetime.datetime.now().timestamp()
- plasma_client.put(object_detector.detect_raw(input_frame), object_id_out)
- duration = datetime.datetime.now().timestamp()-start.value
- start.value = 0.0
- avg_speed.value = (avg_speed.value*9 + duration)/10
-
- class EdgeTPUProcess():
- def __init__(self, tf_device=None):
- self.detection_queue = mp.Queue()
- self.avg_inference_speed = mp.Value('d', 0.01)
- self.detection_start = mp.Value('d', 0.0)
- self.detect_process = None
- self.tf_device = tf_device
- self.start_or_restart()
- def start_or_restart(self):
- self.detection_start.value = 0.0
- if (not self.detect_process is None) and self.detect_process.is_alive():
- self.detect_process.terminate()
- print("Waiting for detection process to exit gracefully...")
- self.detect_process.join(timeout=30)
- if self.detect_process.exitcode is None:
- print("Detection process didnt exit. Force killing...")
- self.detect_process.kill()
- self.detect_process.join()
- self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start, self.tf_device))
- self.detect_process.daemon = True
- self.detect_process.start()
- class RemoteObjectDetector():
- def __init__(self, name, labels, detection_queue):
- self.labels = load_labels(labels)
- self.name = name
- self.fps = EventsPerSecond()
- self.plasma_client = plasma.connect("/tmp/plasma")
- self.detection_queue = detection_queue
-
- def detect(self, tensor_input, threshold=.4):
- detections = []
- now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
- object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
- object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
- self.plasma_client.put(tensor_input, object_id_frame)
- self.detection_queue.put(now)
- raw_detections = self.plasma_client.get(object_id_detections, timeout_ms=10000)
- if raw_detections is plasma.ObjectNotAvailable:
- self.plasma_client.delete([object_id_frame])
- return detections
- for d in raw_detections:
- if d[1] < threshold:
- break
- detections.append((
- self.labels[int(d[0])],
- float(d[1]),
- (d[2], d[3], d[4], d[5])
- ))
- self.plasma_client.delete([object_id_frame, object_id_detections])
- self.fps.update()
- return detections
|