detect_objects.py 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. import os
  2. import cv2
  3. import imutils
  4. import time
  5. import datetime
  6. import ctypes
  7. import logging
  8. import multiprocessing as mp
  9. import threading
  10. import json
  11. from contextlib import closing
  12. import numpy as np
  13. from object_detection.utils import visualization_utils as vis_util
  14. from flask import Flask, Response, make_response, send_file
  15. import paho.mqtt.client as mqtt
  16. from frigate.util import tonumpyarray
  17. from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
  18. from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
  19. from frigate.motion import detect_motion
  20. from frigate.video import fetch_frames, FrameTracker
  21. from frigate.object_detection import detect_objects
  22. RTSP_URL = os.getenv('RTSP_URL')
  23. MQTT_HOST = os.getenv('MQTT_HOST')
  24. MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
  25. # REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
  26. # REGIONS = "400,350,250,50"
  27. REGIONS = os.getenv('REGIONS')
  28. DEBUG = (os.getenv('DEBUG') == '1')
  29. def main():
  30. DETECTED_OBJECTS = []
  31. recent_motion_frames = {}
  32. # Parse selected regions
  33. regions = []
  34. for region_string in REGIONS.split(':'):
  35. region_parts = region_string.split(',')
  36. region_mask_image = cv2.imread("/config/{}".format(region_parts[5]), cv2.IMREAD_GRAYSCALE)
  37. region_mask = np.where(region_mask_image==[0])
  38. regions.append({
  39. 'size': int(region_parts[0]),
  40. 'x_offset': int(region_parts[1]),
  41. 'y_offset': int(region_parts[2]),
  42. 'min_person_area': int(region_parts[3]),
  43. 'min_object_size': int(region_parts[4]),
  44. 'mask': region_mask,
  45. # Event for motion detection signaling
  46. 'motion_detected': mp.Event(),
  47. # create shared array for storing 10 detected objects
  48. # note: this must be a double even though the value you are storing
  49. # is a float. otherwise it stops updating the value in shared
  50. # memory. probably something to do with the size of the memory block
  51. 'output_array': mp.Array(ctypes.c_double, 6*10)
  52. })
  53. # capture a single frame and check the frame shape so the correct array
  54. # size can be allocated in memory
  55. video = cv2.VideoCapture(RTSP_URL)
  56. ret, frame = video.read()
  57. if ret:
  58. frame_shape = frame.shape
  59. else:
  60. print("Unable to capture video stream")
  61. exit(1)
  62. video.release()
  63. # compute the flattened array length from the array shape
  64. flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
  65. # create shared array for storing the full frame image data
  66. shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
  67. # create shared value for storing the frame_time
  68. shared_frame_time = mp.Value('d', 0.0)
  69. # Lock to control access to the frame
  70. frame_lock = mp.Lock()
  71. # Condition for notifying that a new frame is ready
  72. frame_ready = mp.Condition()
  73. # Condition for notifying that motion status changed globally
  74. motion_changed = mp.Condition()
  75. # Condition for notifying that objects were parsed
  76. objects_parsed = mp.Condition()
  77. # Queue for detected objects
  78. object_queue = mp.Queue()
  79. # shape current frame so it can be treated as an image
  80. frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
  81. # start the process to capture frames from the RTSP stream and store in a shared array
  82. capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
  83. shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
  84. capture_process.daemon = True
  85. # for each region, start a separate process for motion detection and object detection
  86. detection_processes = []
  87. motion_processes = []
  88. for region in regions:
  89. detection_process = mp.Process(target=detect_objects, args=(shared_arr,
  90. object_queue,
  91. shared_frame_time,
  92. frame_lock, frame_ready,
  93. region['motion_detected'],
  94. frame_shape,
  95. region['size'], region['x_offset'], region['y_offset'],
  96. region['min_person_area'],
  97. DEBUG))
  98. detection_process.daemon = True
  99. detection_processes.append(detection_process)
  100. motion_process = mp.Process(target=detect_motion, args=(shared_arr,
  101. shared_frame_time,
  102. frame_lock, frame_ready,
  103. region['motion_detected'],
  104. motion_changed,
  105. frame_shape,
  106. region['size'], region['x_offset'], region['y_offset'],
  107. region['min_object_size'], region['mask'],
  108. DEBUG))
  109. motion_process.daemon = True
  110. motion_processes.append(motion_process)
  111. # start a thread to store recent motion frames for processing
  112. frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
  113. recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
  114. frame_tracker.start()
  115. # start a thread to store the highest scoring recent person frame
  116. best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
  117. motion_changed, [region['motion_detected'] for region in regions])
  118. best_person_frame.start()
  119. # start a thread to parse objects from the queue
  120. object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
  121. object_parser.start()
  122. # start a thread to expire objects from the detected objects list
  123. object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
  124. object_cleaner.start()
  125. # connect to mqtt and setup last will
  126. def on_connect(client, userdata, flags, rc):
  127. print("On connect called")
  128. # publish a message to signal that the service is running
  129. client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
  130. client = mqtt.Client()
  131. client.on_connect = on_connect
  132. client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
  133. client.connect(MQTT_HOST, 1883, 60)
  134. client.loop_start()
  135. # start a thread to publish object scores (currently only person)
  136. mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
  137. mqtt_publisher.start()
  138. # start thread to publish motion status
  139. mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
  140. [region['motion_detected'] for region in regions])
  141. mqtt_motion_publisher.start()
  142. # start the process of capturing frames
  143. capture_process.start()
  144. print("capture_process pid ", capture_process.pid)
  145. # start the object detection processes
  146. for detection_process in detection_processes:
  147. detection_process.start()
  148. print("detection_process pid ", detection_process.pid)
  149. # start the motion detection processes
  150. for motion_process in motion_processes:
  151. motion_process.start()
  152. print("motion_process pid ", motion_process.pid)
  153. # create a flask app that encodes frames a mjpeg on demand
  154. app = Flask(__name__)
  155. @app.route('/best_person.jpg')
  156. def best_person():
  157. frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
  158. ret, jpg = cv2.imencode('.jpg', frame)
  159. response = make_response(jpg.tobytes())
  160. response.headers['Content-Type'] = 'image/jpg'
  161. return response
  162. @app.route('/')
  163. def index():
  164. # return a multipart response
  165. return Response(imagestream(),
  166. mimetype='multipart/x-mixed-replace; boundary=frame')
  167. def imagestream():
  168. while True:
  169. # max out at 5 FPS
  170. time.sleep(0.2)
  171. # make a copy of the current detected objects
  172. detected_objects = DETECTED_OBJECTS.copy()
  173. # lock and make a copy of the current frame
  174. with frame_lock:
  175. frame = frame_arr.copy()
  176. # convert to RGB for drawing
  177. frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
  178. # draw the bounding boxes on the screen
  179. for obj in detected_objects:
  180. vis_util.draw_bounding_box_on_image_array(frame,
  181. obj['ymin'],
  182. obj['xmin'],
  183. obj['ymax'],
  184. obj['xmax'],
  185. color='red',
  186. thickness=2,
  187. display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
  188. use_normalized_coordinates=False)
  189. for region in regions:
  190. color = (255,255,255)
  191. if region['motion_detected'].is_set():
  192. color = (0,255,0)
  193. cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
  194. (region['x_offset']+region['size'], region['y_offset']+region['size']),
  195. color, 2)
  196. # convert back to BGR
  197. frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
  198. # encode the image into a jpg
  199. ret, jpg = cv2.imencode('.jpg', frame)
  200. yield (b'--frame\r\n'
  201. b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
  202. app.run(host='0.0.0.0', debug=False)
  203. capture_process.join()
  204. for detection_process in detection_processes:
  205. detection_process.join()
  206. for motion_process in motion_processes:
  207. motion_process.join()
  208. frame_tracker.join()
  209. best_person_frame.join()
  210. object_parser.join()
  211. object_cleaner.join()
  212. mqtt_publisher.join()
  213. if __name__ == '__main__':
  214. main()