123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374 |
- import collections
- import datetime
- import hashlib
- import json
- import logging
- import signal
- import subprocess as sp
- import threading
- import time
- import traceback
- from abc import ABC, abstractmethod
- from multiprocessing import shared_memory
- from typing import AnyStr
- import cv2
- import matplotlib.pyplot as plt
- import numpy as np
- logger = logging.getLogger(__name__)
- def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
- if color is None:
- color = (0,0,255)
- display_text = "{}: {}".format(label, info)
- cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
- font_scale = 0.5
- font = cv2.FONT_HERSHEY_SIMPLEX
- # get the width and height of the text box
- size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
- text_width = size[0][0]
- text_height = size[0][1]
- line_height = text_height + size[1]
- # set the text start position
- if position == 'ul':
- text_offset_x = x_min
- text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
- elif position == 'ur':
- text_offset_x = x_max - (text_width+8)
- text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
- elif position == 'bl':
- text_offset_x = x_min
- text_offset_y = y_max
- elif position == 'br':
- text_offset_x = x_max - (text_width+8)
- text_offset_y = y_max
- # make the coords of the box with a small padding of two pixels
- textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
- cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
- cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
- def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
- # size is the longest edge and divisible by 4
- size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
- # dont go any smaller than 300
- if size < 300:
- size = 300
- # x_offset is midpoint of bounding box minus half the size
- x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
- # if outside the image
- if x_offset < 0:
- x_offset = 0
- elif x_offset > (frame_shape[1]-size):
- x_offset = max(0, (frame_shape[1]-size))
- # y_offset is midpoint of bounding box minus half the size
- y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
- # # if outside the image
- if y_offset < 0:
- y_offset = 0
- elif y_offset > (frame_shape[0]-size):
- y_offset = max(0, (frame_shape[0]-size))
- return (x_offset, y_offset, x_offset+size, y_offset+size)
- def get_yuv_crop(frame_shape, crop):
- # crop should be (x1,y1,x2,y2)
- frame_height = frame_shape[0]//3*2
- frame_width = frame_shape[1]
- # compute the width/height of the uv channels
- uv_width = frame_width//2 # width of the uv channels
- uv_height = frame_height//4 # height of the uv channels
- # compute the offset for upper left corner of the uv channels
- uv_x_offset = crop[0]//2 # x offset of the uv channels
- uv_y_offset = crop[1]//4 # y offset of the uv channels
- # compute the width/height of the uv crops
- uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
- uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
- # ensure crop dimensions are multiples of 2 and 4
- y = (
- crop[0],
- crop[1],
- crop[0] + uv_crop_width*2,
- crop[1] + uv_crop_height*4
- )
- u1 = (
- 0 + uv_x_offset,
- frame_height + uv_y_offset,
- 0 + uv_x_offset + uv_crop_width,
- frame_height + uv_y_offset + uv_crop_height
- )
- u2 = (
- uv_width + uv_x_offset,
- frame_height + uv_y_offset,
- uv_width + uv_x_offset + uv_crop_width,
- frame_height + uv_y_offset + uv_crop_height
- )
- v1 = (
- 0 + uv_x_offset,
- frame_height + uv_height + uv_y_offset,
- 0 + uv_x_offset + uv_crop_width,
- frame_height + uv_height + uv_y_offset + uv_crop_height
- )
- v2 = (
- uv_width + uv_x_offset,
- frame_height + uv_height + uv_y_offset,
- uv_width + uv_x_offset + uv_crop_width,
- frame_height + uv_height + uv_y_offset + uv_crop_height
- )
- return y, u1, u2, v1, v2
- def yuv_region_2_rgb(frame, region):
- try:
- height = frame.shape[0]//3*2
- width = frame.shape[1]
- # get the crop box if the region extends beyond the frame
- crop_x1 = max(0, region[0])
- crop_y1 = max(0, region[1])
- # ensure these are a multiple of 4
- crop_x2 = min(width, region[2])
- crop_y2 = min(height, region[3])
- crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
- y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
- # if the region starts outside the frame, indent the start point in the cropped frame
- y_channel_x_offset = abs(min(0, region[0]))
- y_channel_y_offset = abs(min(0, region[1]))
- uv_channel_x_offset = y_channel_x_offset//2
- uv_channel_y_offset = y_channel_y_offset//4
- # create the yuv region frame
- # make sure the size is a multiple of 4
- size = (region[3] - region[1])//4*4
- yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
- # fill in black
- yuv_cropped_frame[:] = 128
- yuv_cropped_frame[0:size,0:size] = 16
- # copy the y channel
- yuv_cropped_frame[
- y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
- y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
- ] = frame[
- y[1]:y[3],
- y[0]:y[2]
- ]
- uv_crop_width = u1[2] - u1[0]
- uv_crop_height = u1[3] - u1[1]
- # copy u1
- yuv_cropped_frame[
- size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
- 0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
- ] = frame[
- u1[1]:u1[3],
- u1[0]:u1[2]
- ]
- # copy u2
- yuv_cropped_frame[
- size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
- size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
- ] = frame[
- u2[1]:u2[3],
- u2[0]:u2[2]
- ]
- # copy v1
- yuv_cropped_frame[
- size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
- 0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
- ] = frame[
- v1[1]:v1[3],
- v1[0]:v1[2]
- ]
- # copy v2
- yuv_cropped_frame[
- size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
- size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
- ] = frame[
- v2[1]:v2[3],
- v2[0]:v2[2]
- ]
- return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
- except:
- print(f"frame.shape: {frame.shape}")
- print(f"region: {region}")
- raise
- def intersection(box_a, box_b):
- return (
- max(box_a[0], box_b[0]),
- max(box_a[1], box_b[1]),
- min(box_a[2], box_b[2]),
- min(box_a[3], box_b[3])
- )
- def area(box):
- return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
-
- def intersection_over_union(box_a, box_b):
- # determine the (x, y)-coordinates of the intersection rectangle
- intersect = intersection(box_a, box_b)
- # compute the area of intersection rectangle
- inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
- if inter_area == 0:
- return 0.0
-
- # compute the area of both the prediction and ground-truth
- # rectangles
- box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
- box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
- # compute the intersection over union by taking the intersection
- # area and dividing it by the sum of prediction + ground-truth
- # areas - the interesection area
- iou = inter_area / float(box_a_area + box_b_area - inter_area)
- # return the intersection over union value
- return iou
- def clipped(obj, frame_shape):
- # if the object is within 5 pixels of the region border, and the region is not on the edge
- # consider the object to be clipped
- box = obj[2]
- region = obj[4]
- if ((region[0] > 5 and box[0]-region[0] <= 5) or
- (region[1] > 5 and box[1]-region[1] <= 5) or
- (frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
- (frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
- return True
- else:
- return False
- class EventsPerSecond:
- def __init__(self, max_events=1000):
- self._start = None
- self._max_events = max_events
- self._timestamps = []
-
- def start(self):
- self._start = datetime.datetime.now().timestamp()
- def update(self):
- if self._start is None:
- self.start()
- self._timestamps.append(datetime.datetime.now().timestamp())
- # truncate the list when it goes 100 over the max_size
- if len(self._timestamps) > self._max_events+100:
- self._timestamps = self._timestamps[(1-self._max_events):]
- def eps(self, last_n_seconds=10):
- if self._start is None:
- self.start()
- # compute the (approximate) events in the last n seconds
- now = datetime.datetime.now().timestamp()
- seconds = min(now-self._start, last_n_seconds)
- return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
- def print_stack(sig, frame):
- traceback.print_stack(frame)
- def listen():
- signal.signal(signal.SIGUSR1, print_stack)
- def create_mask(frame_shape, mask):
- mask_img = np.zeros(frame_shape, np.uint8)
- mask_img[:] = 255
- if isinstance(mask, list):
- for m in mask:
- add_mask(m, mask_img)
- elif isinstance(mask, str):
- add_mask(mask, mask_img)
- return mask_img
- def add_mask(mask, mask_img):
- points = mask.split(',')
- contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
- cv2.fillPoly(mask_img, pts=[contour], color=(0))
- class FrameManager(ABC):
- @abstractmethod
- def create(self, name, size) -> AnyStr:
- pass
- @abstractmethod
- def get(self, name, timeout_ms=0):
- pass
- @abstractmethod
- def close(self, name):
- pass
- @abstractmethod
- def delete(self, name):
- pass
- class DictFrameManager(FrameManager):
- def __init__(self):
- self.frames = {}
-
- def create(self, name, size) -> AnyStr:
- mem = bytearray(size)
- self.frames[name] = mem
- return mem
-
- def get(self, name, shape):
- mem = self.frames[name]
- return np.ndarray(shape, dtype=np.uint8, buffer=mem)
-
- def close(self, name):
- pass
-
- def delete(self, name):
- del self.frames[name]
- class SharedMemoryFrameManager(FrameManager):
- def __init__(self):
- self.shm_store = {}
-
- def create(self, name, size) -> AnyStr:
- shm = shared_memory.SharedMemory(name=name, create=True, size=size)
- self.shm_store[name] = shm
- return shm.buf
- def get(self, name, shape):
- if name in self.shm_store:
- shm = self.shm_store[name]
- else:
- shm = shared_memory.SharedMemory(name=name)
- self.shm_store[name] = shm
- return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
- def close(self, name):
- if name in self.shm_store:
- self.shm_store[name].close()
- del self.shm_store[name]
- def delete(self, name):
- if name in self.shm_store:
- self.shm_store[name].close()
- self.shm_store[name].unlink()
- del self.shm_store[name]
|