123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- import sys
- import click
- import os
- import datetime
- from unittest import TestCase, main
- from frigate.video import process_frames, start_or_restart_ffmpeg, capture_frames, get_frame_shape
- from frigate.util import DictFrameManager, SharedMemoryFrameManager, EventsPerSecond, draw_box_with_label
- from frigate.motion import MotionDetector
- from frigate.edgetpu import LocalObjectDetector
- from frigate.objects import ObjectTracker
- import multiprocessing as mp
- import numpy as np
- import cv2
- from frigate.object_processing import COLOR_MAP, CameraState
- class ProcessClip():
- def __init__(self, clip_path, frame_shape, config):
- self.clip_path = clip_path
- self.frame_shape = frame_shape
- self.camera_name = 'camera'
- self.frame_manager = DictFrameManager()
- # self.frame_manager = SharedMemoryFrameManager()
- self.frame_queue = mp.Queue()
- self.detected_objects_queue = mp.Queue()
- self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
- def load_frames(self):
- fps = EventsPerSecond()
- skipped_fps = EventsPerSecond()
- stop_event = mp.Event()
- detection_frame = mp.Value('d', datetime.datetime.now().timestamp()+100000)
- current_frame = mp.Value('d', 0.0)
- ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel panic -i {self.clip_path} -f rawvideo -pix_fmt rgb24 pipe:".split(" ")
- ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.frame_shape[0]*self.frame_shape[1]*self.frame_shape[2])
- capture_frames(ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue, 1, fps, skipped_fps, stop_event, detection_frame, current_frame)
- ffmpeg_process.wait()
- ffmpeg_process.communicate()
-
- def process_frames(self, objects_to_track=['person'], object_filters={}):
- mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
- mask[:] = 255
- motion_detector = MotionDetector(self.frame_shape, mask)
- object_detector = LocalObjectDetector(labels='/labelmap.txt')
- object_tracker = ObjectTracker(10)
- process_fps = mp.Value('d', 0.0)
- detection_fps = mp.Value('d', 0.0)
- current_frame = mp.Value('d', 0.0)
- stop_event = mp.Event()
- process_frames(self.camera_name, self.frame_queue, self.frame_shape, self.frame_manager, motion_detector, object_detector, object_tracker, self.detected_objects_queue,
- process_fps, detection_fps, current_frame, objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
-
- def objects_found(self, debug_path=None):
- obj_detected = False
- top_computed_score = 0.0
- def handle_event(name, obj):
- nonlocal obj_detected
- nonlocal top_computed_score
- if obj['computed_score'] > top_computed_score:
- top_computed_score = obj['computed_score']
- if not obj['false_positive']:
- obj_detected = True
- self.camera_state.on('new', handle_event)
- self.camera_state.on('update', handle_event)
- while(not self.detected_objects_queue.empty()):
- camera_name, frame_time, current_tracked_objects = self.detected_objects_queue.get()
- if not debug_path is None:
- self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
- self.camera_state.update(frame_time, current_tracked_objects)
- for obj in self.camera_state.tracked_objects.values():
- print(f"{frame_time}: {obj['id']} - {obj['computed_score']} - {obj['score_history']}")
-
- self.frame_manager.delete(self.camera_state.previous_frame_id)
-
- return {
- 'object_detected': obj_detected,
- 'top_score': top_computed_score
- }
-
- def save_debug_frame(self, debug_path, frame_time, tracked_objects):
- current_frame = self.frame_manager.get(f"{self.camera_name}{frame_time}", self.frame_shape)
- # draw the bounding boxes on the frame
- for obj in tracked_objects:
- thickness = 2
- color = (0,0,175)
- if obj['frame_time'] != frame_time:
- thickness = 1
- color = (255,0,0)
- else:
- color = (255,255,0)
- # draw the bounding boxes on the frame
- box = obj['box']
- draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
- # draw the regions on the frame
- region = obj['region']
- draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
-
- cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR))
- @click.command()
- @click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
- @click.option("-l", "--label", default='person', help="Label name to detect.")
- @click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
- @click.option("--debug-path", default=None, help="Path to output frames for debugging.")
- def process(path, label, threshold, debug_path):
- clips = []
- if os.path.isdir(path):
- files = os.listdir(path)
- files.sort()
- clips = [os.path.join(path, file) for file in files]
- elif os.path.isfile(path):
- clips.append(path)
- config = {
- 'snapshots': {
- 'show_timestamp': False,
- 'draw_zones': False
- },
- 'zones': {},
- 'objects': {
- 'track': [label],
- 'filters': {
- 'person': {
- 'threshold': threshold
- }
- }
- }
- }
- results = []
- for c in clips:
- frame_shape = get_frame_shape(c)
- config['frame_shape'] = frame_shape
- process_clip = ProcessClip(c, frame_shape, config)
- process_clip.load_frames()
- process_clip.process_frames(objects_to_track=config['objects']['track'])
- results.append((c, process_clip.objects_found(debug_path)))
- for result in results:
- print(f"{result[0]}: {result[1]}")
-
- positive_count = sum(1 for result in results if result[1]['object_detected'])
- print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
- if __name__ == '__main__':
- process()
|