detect_objects.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. import faulthandler; faulthandler.enable()
  2. import os
  3. import signal
  4. import sys
  5. import traceback
  6. import signal
  7. import cv2
  8. import time
  9. import datetime
  10. import queue
  11. import yaml
  12. import threading
  13. import multiprocessing as mp
  14. import subprocess as sp
  15. import numpy as np
  16. import logging
  17. from flask import Flask, Response, make_response, jsonify, request
  18. import paho.mqtt.client as mqtt
  19. from frigate.video import track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
  20. from frigate.object_processing import TrackedObjectProcessor
  21. from frigate.events import EventProcessor
  22. from frigate.util import EventsPerSecond
  23. from frigate.edgetpu import EdgeTPUProcess
  24. FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
  25. with open('/config/config.yml') as f:
  26. CONFIG = yaml.safe_load(f)
  27. MQTT_HOST = CONFIG['mqtt']['host']
  28. MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
  29. MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
  30. MQTT_USER = CONFIG.get('mqtt', {}).get('user')
  31. MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
  32. if not MQTT_PASS is None:
  33. MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
  34. MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
  35. # Set the default FFmpeg config
  36. FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
  37. FFMPEG_DEFAULT_CONFIG = {
  38. 'global_args': FFMPEG_CONFIG.get('global_args',
  39. ['-hide_banner','-loglevel','panic']),
  40. 'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
  41. []),
  42. 'input_args': FFMPEG_CONFIG.get('input_args',
  43. ['-avoid_negative_ts', 'make_zero',
  44. '-fflags', 'nobuffer',
  45. '-flags', 'low_delay',
  46. '-strict', 'experimental',
  47. '-fflags', '+genpts+discardcorrupt',
  48. '-rtsp_transport', 'tcp',
  49. '-stimeout', '5000000',
  50. '-use_wallclock_as_timestamps', '1']),
  51. 'output_args': FFMPEG_CONFIG.get('output_args',
  52. ['-f', 'rawvideo',
  53. '-pix_fmt', 'rgb24'])
  54. }
  55. GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
  56. WEB_PORT = CONFIG.get('web_port', 5000)
  57. DEBUG = (CONFIG.get('debug', '0') == '1')
  58. TENSORFLOW_DEVICE = CONFIG.get('tensorflow_device')
  59. class CameraWatchdog(threading.Thread):
  60. def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, stop_event):
  61. threading.Thread.__init__(self)
  62. self.camera_processes = camera_processes
  63. self.config = config
  64. self.tflite_process = tflite_process
  65. self.tracked_objects_queue = tracked_objects_queue
  66. self.stop_event = stop_event
  67. def run(self):
  68. time.sleep(10)
  69. while True:
  70. # wait a bit before checking
  71. time.sleep(10)
  72. if self.stop_event.is_set():
  73. print(f"Exiting watchdog...")
  74. break
  75. now = datetime.datetime.now().timestamp()
  76. # check the detection process
  77. detection_start = self.tflite_process.detection_start.value
  78. if (detection_start > 0.0 and
  79. now - detection_start > 10):
  80. print("Detection appears to be stuck. Restarting detection process")
  81. self.tflite_process.start_or_restart()
  82. elif not self.tflite_process.detect_process.is_alive():
  83. print("Detection appears to have stopped. Restarting detection process")
  84. self.tflite_process.start_or_restart()
  85. # check the camera processes
  86. for name, camera_process in self.camera_processes.items():
  87. process = camera_process['process']
  88. if not process.is_alive():
  89. print(f"Track process for {name} is not alive. Starting again...")
  90. camera_process['process_fps'].value = 0.0
  91. camera_process['detection_fps'].value = 0.0
  92. camera_process['read_start'].value = 0.0
  93. process = mp.Process(target=track_camera, args=(name, self.config[name], camera_process['frame_queue'],
  94. camera_process['frame_shape'], self.tflite_process.detection_queue, self.tracked_objects_queue,
  95. camera_process['process_fps'], camera_process['detection_fps'],
  96. camera_process['read_start'], camera_process['detection_frame'], self.stop_event))
  97. process.daemon = True
  98. camera_process['process'] = process
  99. process.start()
  100. print(f"Track process started for {name}: {process.pid}")
  101. if not camera_process['capture_thread'].is_alive():
  102. frame_shape = camera_process['frame_shape']
  103. frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
  104. ffmpeg_process = start_or_restart_ffmpeg(camera_process['ffmpeg_cmd'], frame_size)
  105. camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, camera_process['frame_queue'],
  106. camera_process['take_frame'], camera_process['camera_fps'], camera_process['detection_frame'], self.stop_event)
  107. camera_capture.start()
  108. camera_process['ffmpeg_process'] = ffmpeg_process
  109. camera_process['capture_thread'] = camera_capture
  110. elif now - camera_process['capture_thread'].current_frame.value > 5:
  111. print(f"No frames received from {name} in 5 seconds. Exiting ffmpeg...")
  112. ffmpeg_process = camera_process['ffmpeg_process']
  113. ffmpeg_process.terminate()
  114. try:
  115. print("Waiting for ffmpeg to exit gracefully...")
  116. ffmpeg_process.communicate(timeout=30)
  117. except sp.TimeoutExpired:
  118. print("FFmpeg didnt exit. Force killing...")
  119. ffmpeg_process.kill()
  120. ffmpeg_process.communicate()
  121. def main():
  122. stop_event = threading.Event()
  123. # connect to mqtt and setup last will
  124. def on_connect(client, userdata, flags, rc):
  125. print("On connect called")
  126. if rc != 0:
  127. if rc == 3:
  128. print ("MQTT Server unavailable")
  129. elif rc == 4:
  130. print ("MQTT Bad username or password")
  131. elif rc == 5:
  132. print ("MQTT Not authorized")
  133. else:
  134. print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
  135. # publish a message to signal that the service is running
  136. client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
  137. client = mqtt.Client(client_id=MQTT_CLIENT_ID)
  138. client.on_connect = on_connect
  139. client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
  140. if not MQTT_USER is None:
  141. client.username_pw_set(MQTT_USER, password=MQTT_PASS)
  142. client.connect(MQTT_HOST, MQTT_PORT, 60)
  143. client.loop_start()
  144. ##
  145. # Setup config defaults for cameras
  146. ##
  147. for name, config in CONFIG['cameras'].items():
  148. config['snapshots'] = {
  149. 'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
  150. 'draw_zones': config.get('snapshots', {}).get('draw_zones', False)
  151. }
  152. config['zones'] = config.get('zones', {})
  153. # Queue for cameras to push tracked objects to
  154. tracked_objects_queue = mp.Queue()
  155. # Queue for clip processing
  156. event_queue = mp.Queue()
  157. # create the detection pipes
  158. out_events = {}
  159. for name in CONFIG['cameras'].keys():
  160. out_events[name] = mp.Event()
  161. # Start the shared tflite process
  162. tflite_process = EdgeTPUProcess(out_events=out_events, tf_device=TENSORFLOW_DEVICE)
  163. # create the camera processes
  164. camera_processes = {}
  165. for name, config in CONFIG['cameras'].items():
  166. # Merge the ffmpeg config with the global config
  167. ffmpeg = config.get('ffmpeg', {})
  168. ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
  169. ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
  170. ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
  171. ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
  172. ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
  173. if not config.get('fps') is None:
  174. ffmpeg_output_args = ["-r", str(config.get('fps'))] + ffmpeg_output_args
  175. if config.get('save_clips', {}).get('enabled', False):
  176. ffmpeg_output_args = [
  177. "-f",
  178. "segment",
  179. "-segment_time",
  180. "10",
  181. "-segment_format",
  182. "mp4",
  183. "-reset_timestamps",
  184. "1",
  185. "-strftime",
  186. "1",
  187. "-c",
  188. "copy",
  189. "-an",
  190. "-map",
  191. "0",
  192. f"/cache/{name}-%Y%m%d%H%M%S.mp4"
  193. ] + ffmpeg_output_args
  194. ffmpeg_cmd = (['ffmpeg'] +
  195. ffmpeg_global_args +
  196. ffmpeg_hwaccel_args +
  197. ffmpeg_input_args +
  198. ['-i', ffmpeg_input] +
  199. ffmpeg_output_args +
  200. ['pipe:'])
  201. if 'width' in config and 'height' in config:
  202. frame_shape = (config['height'], config['width'], 3)
  203. else:
  204. frame_shape = get_frame_shape(ffmpeg_input)
  205. config['frame_shape'] = frame_shape
  206. frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
  207. take_frame = config.get('take_frame', 1)
  208. detection_frame = mp.Value('d', 0.0)
  209. ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
  210. frame_queue = mp.Queue()
  211. camera_fps = EventsPerSecond()
  212. camera_fps.start()
  213. camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps, detection_frame, stop_event)
  214. camera_capture.start()
  215. camera_processes[name] = {
  216. 'camera_fps': camera_fps,
  217. 'take_frame': take_frame,
  218. 'process_fps': mp.Value('d', 0.0),
  219. 'detection_fps': mp.Value('d', 0.0),
  220. 'detection_frame': detection_frame,
  221. 'read_start': mp.Value('d', 0.0),
  222. 'ffmpeg_process': ffmpeg_process,
  223. 'ffmpeg_cmd': ffmpeg_cmd,
  224. 'frame_queue': frame_queue,
  225. 'frame_shape': frame_shape,
  226. 'capture_thread': camera_capture
  227. }
  228. # merge global object config into camera object config
  229. camera_objects_config = config.get('objects', {})
  230. # get objects to track for camera
  231. objects_to_track = camera_objects_config.get('track', GLOBAL_OBJECT_CONFIG.get('track', ['person']))
  232. # get object filters
  233. object_filters = camera_objects_config.get('filters', GLOBAL_OBJECT_CONFIG.get('filters', {}))
  234. config['objects'] = {
  235. 'track': objects_to_track,
  236. 'filters': object_filters
  237. }
  238. camera_process = mp.Process(target=track_camera, args=(name, config, frame_queue, frame_shape,
  239. tflite_process.detection_queue, out_events[name], tracked_objects_queue, camera_processes[name]['process_fps'],
  240. camera_processes[name]['detection_fps'],
  241. camera_processes[name]['read_start'], camera_processes[name]['detection_frame'], stop_event))
  242. camera_process.daemon = True
  243. camera_processes[name]['process'] = camera_process
  244. # start the camera_processes
  245. for name, camera_process in camera_processes.items():
  246. camera_process['process'].start()
  247. print(f"Camera_process started for {name}: {camera_process['process'].pid}")
  248. event_processor = EventProcessor(CONFIG, camera_processes, '/cache', '/clips', event_queue, stop_event)
  249. event_processor.start()
  250. object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
  251. object_processor.start()
  252. camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, stop_event)
  253. camera_watchdog.start()
  254. def receiveSignal(signalNumber, frame):
  255. print('Received:', signalNumber)
  256. stop_event.set()
  257. event_processor.join()
  258. object_processor.join()
  259. camera_watchdog.join()
  260. for camera_process in camera_processes.values():
  261. camera_process['capture_thread'].join()
  262. tflite_process.stop()
  263. sys.exit()
  264. signal.signal(signal.SIGTERM, receiveSignal)
  265. signal.signal(signal.SIGINT, receiveSignal)
  266. # create a flask app that encodes frames a mjpeg on demand
  267. app = Flask(__name__)
  268. log = logging.getLogger('werkzeug')
  269. log.setLevel(logging.ERROR)
  270. @app.route('/')
  271. def ishealthy():
  272. # return a healh
  273. return "Frigate is running. Alive and healthy!"
  274. @app.route('/debug/stack')
  275. def processor_stack():
  276. frame = sys._current_frames().get(object_processor.ident, None)
  277. if frame:
  278. return "<br>".join(traceback.format_stack(frame)), 200
  279. else:
  280. return "no frame found", 200
  281. @app.route('/debug/print_stack')
  282. def print_stack():
  283. pid = int(request.args.get('pid', 0))
  284. if pid == 0:
  285. return "missing pid", 200
  286. else:
  287. os.kill(pid, signal.SIGUSR1)
  288. return "check logs", 200
  289. @app.route('/debug/stats')
  290. def stats():
  291. stats = {}
  292. total_detection_fps = 0
  293. for name, camera_stats in camera_processes.items():
  294. total_detection_fps += camera_stats['detection_fps'].value
  295. capture_thread = camera_stats['capture_thread']
  296. stats[name] = {
  297. 'camera_fps': round(capture_thread.fps.eps(), 2),
  298. 'process_fps': round(camera_stats['process_fps'].value, 2),
  299. 'skipped_fps': round(capture_thread.skipped_fps.eps(), 2),
  300. 'detection_fps': round(camera_stats['detection_fps'].value, 2),
  301. 'read_start': camera_stats['read_start'].value,
  302. 'pid': camera_stats['process'].pid,
  303. 'ffmpeg_pid': camera_stats['ffmpeg_process'].pid,
  304. 'frame_info': {
  305. 'read': capture_thread.current_frame.value,
  306. 'detect': camera_stats['detection_frame'].value,
  307. 'process': object_processor.camera_data[name]['current_frame_time']
  308. }
  309. }
  310. stats['coral'] = {
  311. 'fps': round(total_detection_fps, 2),
  312. 'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
  313. 'detection_start': tflite_process.detection_start.value,
  314. 'pid': tflite_process.detect_process.pid
  315. }
  316. return jsonify(stats)
  317. @app.route('/<camera_name>/<label>/best.jpg')
  318. def best(camera_name, label):
  319. if camera_name in CONFIG['cameras']:
  320. best_object = object_processor.get_best(camera_name, label)
  321. best_frame = best_object.get('frame', np.zeros((720,1280,3), np.uint8))
  322. crop = bool(request.args.get('crop', 0, type=int))
  323. if crop:
  324. region = best_object.get('region', [0,0,300,300])
  325. best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
  326. height = int(request.args.get('h', str(best_frame.shape[0])))
  327. width = int(height*best_frame.shape[1]/best_frame.shape[0])
  328. best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
  329. best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
  330. ret, jpg = cv2.imencode('.jpg', best_frame)
  331. response = make_response(jpg.tobytes())
  332. response.headers['Content-Type'] = 'image/jpg'
  333. return response
  334. else:
  335. return "Camera named {} not found".format(camera_name), 404
  336. @app.route('/<camera_name>')
  337. def mjpeg_feed(camera_name):
  338. fps = int(request.args.get('fps', '3'))
  339. height = int(request.args.get('h', '360'))
  340. if camera_name in CONFIG['cameras']:
  341. # return a multipart response
  342. return Response(imagestream(camera_name, fps, height),
  343. mimetype='multipart/x-mixed-replace; boundary=frame')
  344. else:
  345. return "Camera named {} not found".format(camera_name), 404
  346. @app.route('/<camera_name>/latest.jpg')
  347. def latest_frame(camera_name):
  348. if camera_name in CONFIG['cameras']:
  349. # max out at specified FPS
  350. frame = object_processor.get_current_frame(camera_name)
  351. if frame is None:
  352. frame = np.zeros((720,1280,3), np.uint8)
  353. height = int(request.args.get('h', str(frame.shape[0])))
  354. width = int(height*frame.shape[1]/frame.shape[0])
  355. frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
  356. frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
  357. ret, jpg = cv2.imencode('.jpg', frame)
  358. response = make_response(jpg.tobytes())
  359. response.headers['Content-Type'] = 'image/jpg'
  360. return response
  361. else:
  362. return "Camera named {} not found".format(camera_name), 404
  363. def imagestream(camera_name, fps, height):
  364. while True:
  365. # max out at specified FPS
  366. time.sleep(1/fps)
  367. frame = object_processor.get_current_frame(camera_name)
  368. if frame is None:
  369. frame = np.zeros((height,int(height*16/9),3), np.uint8)
  370. width = int(height*frame.shape[1]/frame.shape[0])
  371. frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
  372. frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
  373. ret, jpg = cv2.imencode('.jpg', frame)
  374. yield (b'--frame\r\n'
  375. b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
  376. app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
  377. object_processor.join()
  378. if __name__ == '__main__':
  379. main()