123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- import os
- import time
- import datetime
- import cv2
- import threading
- import ctypes
- import multiprocessing as mp
- import numpy as np
- from object_detection.utils import visualization_utils as vis_util
- from . util import tonumpyarray
- from . object_detection import FramePrepper
- from . objects import ObjectCleaner, BestPersonFrame
- from . mqtt import MqttObjectPublisher
- # fetch the frames as fast a possible and store current frame in a shared memory array
- def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
- # convert shared memory array into numpy and shape into image array
- arr = tonumpyarray(shared_arr).reshape(frame_shape)
- # start the video capture
- video = cv2.VideoCapture()
- video.open(rtsp_url)
- print("Opening the RTSP Url...")
- # keep the buffer small so we minimize old data
- video.set(cv2.CAP_PROP_BUFFERSIZE,1)
- bad_frame_counter = 0
- while True:
- # check if the video stream is still open, and reopen if needed
- if not video.isOpened():
- success = video.open(rtsp_url)
- if not success:
- time.sleep(1)
- continue
- # grab the frame, but dont decode it yet
- ret = video.grab()
- # snapshot the time the frame was grabbed
- frame_time = datetime.datetime.now()
- if ret:
- # go ahead and decode the current frame
- ret, frame = video.retrieve()
- if ret:
- # Lock access and update frame
- with frame_lock:
- arr[:] = frame
- shared_frame_time.value = frame_time.timestamp()
- # Notify with the condition that a new frame is ready
- with frame_ready:
- frame_ready.notify_all()
- bad_frame_counter = 0
- else:
- print("Unable to decode frame")
- bad_frame_counter += 1
- else:
- print("Unable to grab a frame")
- bad_frame_counter += 1
-
- if bad_frame_counter > 100:
- video.release()
-
- video.release()
- # Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
- class FrameTracker(threading.Thread):
- def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
- threading.Thread.__init__(self)
- self.shared_frame = shared_frame
- self.frame_time = frame_time
- self.frame_ready = frame_ready
- self.frame_lock = frame_lock
- self.recent_frames = recent_frames
- def run(self):
- frame_time = 0.0
- while True:
- now = datetime.datetime.now().timestamp()
- # wait for a frame
- with self.frame_ready:
- # if there isnt a frame ready for processing or it is old, wait for a signal
- if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
- self.frame_ready.wait()
-
- # lock and make a copy of the frame
- with self.frame_lock:
- frame = self.shared_frame.copy()
- frame_time = self.frame_time.value
-
- # add the frame to recent frames
- self.recent_frames[frame_time] = frame
- # delete any old frames
- stored_frame_times = list(self.recent_frames.keys())
- for k in stored_frame_times:
- if (now - k) > 2:
- del self.recent_frames[k]
- def get_frame_shape(rtsp_url):
- # capture a single frame and check the frame shape so the correct array
- # size can be allocated in memory
- video = cv2.VideoCapture(rtsp_url)
- ret, frame = video.read()
- frame_shape = frame.shape
- video.release()
- return frame_shape
- def get_rtsp_url(rtsp_config):
- if (rtsp_config['password'].startswith('$')):
- rtsp_config['password'] = os.getenv(rtsp_config['password'][1:])
- return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],
- rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
- rtsp_config['path'])
- class CameraWatchdog(threading.Thread):
- def __init__(self, camera):
- threading.Thread.__init__(self)
- self.camera = camera
- def run(self):
- while True:
- # wait a bit before checking
- time.sleep(60)
- if (datetime.datetime.now().timestamp() - self.camera.shared_frame_time.value) > 2:
- print("last frame is more than 2 seconds old, restarting camera capture...")
- self.camera.start_or_restart_capture()
- time.sleep(5)
- class Camera:
- def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
- self.name = name
- self.config = config
- self.detected_objects = []
- self.recent_frames = {}
- self.rtsp_url = get_rtsp_url(self.config['rtsp'])
- self.regions = self.config['regions']
- self.frame_shape = get_frame_shape(self.rtsp_url)
- self.mqtt_client = mqtt_client
- self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
- # compute the flattened array length from the shape of the frame
- flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
- # create shared array for storing the full frame image data
- self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length)
- # create shared value for storing the frame_time
- self.shared_frame_time = mp.Value('d', 0.0)
- # Lock to control access to the frame
- self.frame_lock = mp.Lock()
- # Condition for notifying that a new frame is ready
- self.frame_ready = mp.Condition()
- # Condition for notifying that objects were parsed
- self.objects_parsed = mp.Condition()
- # shape current frame so it can be treated as a numpy image
- self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
- self.capture_process = None
- # for each region, create a separate thread to resize the region and prep for detection
- self.detection_prep_threads = []
- for region in self.config['regions']:
- # set a default threshold of 0.5 if not defined
- if not 'threshold' in region:
- region['threshold'] = 0.5
- if not isinstance(region['threshold'], float):
- print('Threshold is not a float. Setting to 0.5 default.')
- region['threshold'] = 0.5
- self.detection_prep_threads.append(FramePrepper(
- self.name,
- self.shared_frame_np,
- self.shared_frame_time,
- self.frame_ready,
- self.frame_lock,
- region['size'], region['x_offset'], region['y_offset'], region['threshold'],
- prepped_frame_queue
- ))
-
- # start a thread to store recent motion frames for processing
- self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,
- self.frame_ready, self.frame_lock, self.recent_frames)
- self.frame_tracker.start()
- # start a thread to store the highest scoring recent person frame
- self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
- self.best_person_frame.start()
- # start a thread to expire objects from the detected objects list
- self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
- self.object_cleaner.start()
- # start a thread to publish object scores (currently only person)
- mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
- mqtt_publisher.start()
- # create a watchdog thread for capture process
- self.watchdog = CameraWatchdog(self)
- # load in the mask for person detection
- if 'mask' in self.config:
- self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
- else:
- self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
- self.mask[:] = 255
- def start_or_restart_capture(self):
- if not self.capture_process is None:
- print("Terminating the existing capture process...")
- self.capture_process.terminate()
- del self.capture_process
- self.capture_process = None
-
- # create the process to capture frames from the RTSP stream and store in a shared array
- print("Creating a new capture process...")
- self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
- self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
- self.capture_process.daemon = True
- print("Starting a new capture process...")
- self.capture_process.start()
-
- def start(self):
- self.start_or_restart_capture()
- # start the object detection prep threads
- for detection_prep_thread in self.detection_prep_threads:
- detection_prep_thread.start()
- self.watchdog.start()
-
- def join(self):
- self.capture_process.join()
-
- def get_capture_pid(self):
- return self.capture_process.pid
-
- def add_objects(self, objects):
- if len(objects) == 0:
- return
- for obj in objects:
- if obj['name'] == 'person':
- person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
- # find the matching region
- region = None
- for r in self.regions:
- if (
- obj['xmin'] >= r['x_offset'] and
- obj['ymin'] >= r['y_offset'] and
- obj['xmax'] <= r['x_offset']+r['size'] and
- obj['ymax'] <= r['y_offset']+r['size']
- ):
- region = r
- break
-
- # if the min person area is larger than the
- # detected person, don't add it to detected objects
- if region and region['min_person_area'] > person_area:
- continue
-
- # compute the coordinates of the person and make sure
- # the location isnt outide the bounds of the image (can happen from rounding)
- y_location = min(int(obj['ymax']), len(self.mask)-1)
- x_location = min(int((obj['xmax']-obj['xmin'])/2.0), len(self.mask[0])-1)
- # if the person is in a masked location, continue
- if self.mask[y_location][x_location] == [0]:
- continue
- self.detected_objects.append(obj)
- with self.objects_parsed:
- self.objects_parsed.notify_all()
- def get_best_person(self):
- return self.best_person_frame.best_frame
-
- def get_current_frame_with_objects(self):
- # make a copy of the current detected objects
- detected_objects = self.detected_objects.copy()
- # lock and make a copy of the current frame
- with self.frame_lock:
- frame = self.shared_frame_np.copy()
- # convert to RGB for drawing
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- # draw the bounding boxes on the screen
- for obj in detected_objects:
- vis_util.draw_bounding_box_on_image_array(frame,
- obj['ymin'],
- obj['xmin'],
- obj['ymax'],
- obj['xmax'],
- color='red',
- thickness=2,
- display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
- use_normalized_coordinates=False)
- for region in self.regions:
- color = (255,255,255)
- cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
- (region['x_offset']+region['size'], region['y_offset']+region['size']),
- color, 2)
- # convert back to BGR
- frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
- return frame
-
-
|