detect_objects.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. import os
  2. import cv2
  3. import imutils
  4. import time
  5. import datetime
  6. import ctypes
  7. import logging
  8. import multiprocessing as mp
  9. import threading
  10. import json
  11. from contextlib import closing
  12. import numpy as np
  13. import tensorflow as tf
  14. from object_detection.utils import label_map_util
  15. from object_detection.utils import visualization_utils as vis_util
  16. from flask import Flask, Response, make_response
  17. import paho.mqtt.client as mqtt
  18. RTSP_URL = os.getenv('RTSP_URL')
  19. # Path to frozen detection graph. This is the actual model that is used for the object detection.
  20. PATH_TO_CKPT = '/frozen_inference_graph.pb'
  21. # List of the strings that is used to add correct label for each box.
  22. PATH_TO_LABELS = '/label_map.pbtext'
  23. MQTT_HOST = os.getenv('MQTT_HOST')
  24. MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
  25. MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
  26. # TODO: make dynamic?
  27. NUM_CLASSES = 90
  28. # REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
  29. # REGIONS = "400,350,250,50"
  30. REGIONS = os.getenv('REGIONS')
  31. DETECTED_OBJECTS = []
  32. # Loading label map
  33. label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
  34. categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
  35. use_display_name=True)
  36. category_index = label_map_util.create_category_index(categories)
  37. def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
  38. # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  39. image_np_expanded = np.expand_dims(cropped_frame, axis=0)
  40. image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
  41. # Each box represents a part of the image where a particular object was detected.
  42. boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
  43. # Each score represent how level of confidence for each of the objects.
  44. # Score is shown on the result image, together with the class label.
  45. scores = detection_graph.get_tensor_by_name('detection_scores:0')
  46. classes = detection_graph.get_tensor_by_name('detection_classes:0')
  47. num_detections = detection_graph.get_tensor_by_name('num_detections:0')
  48. # Actual detection.
  49. (boxes, scores, classes, num_detections) = sess.run(
  50. [boxes, scores, classes, num_detections],
  51. feed_dict={image_tensor: image_np_expanded})
  52. if debug:
  53. if len([category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.5]) > 0:
  54. vis_util.visualize_boxes_and_labels_on_image_array(
  55. cropped_frame,
  56. np.squeeze(boxes),
  57. np.squeeze(classes).astype(np.int32),
  58. np.squeeze(scores),
  59. category_index,
  60. use_normalized_coordinates=True,
  61. line_thickness=4)
  62. cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
  63. # build an array of detected objects
  64. objects = []
  65. for index, value in enumerate(classes[0]):
  66. score = scores[0, index]
  67. if score > 0.5:
  68. box = boxes[0, index].tolist()
  69. box[0] = (box[0] * region_size) + region_y_offset
  70. box[1] = (box[1] * region_size) + region_x_offset
  71. box[2] = (box[2] * region_size) + region_y_offset
  72. box[3] = (box[3] * region_size) + region_x_offset
  73. objects += [value, scores[0, index]] + box
  74. # only get the first 10 objects
  75. if len(objects) == 60:
  76. break
  77. return objects
  78. class ObjectParser(threading.Thread):
  79. def __init__(self, object_arrays):
  80. threading.Thread.__init__(self)
  81. self._object_arrays = object_arrays
  82. def run(self):
  83. global DETECTED_OBJECTS
  84. while True:
  85. detected_objects = []
  86. for object_array in self._object_arrays:
  87. object_index = 0
  88. while(object_index < 60 and object_array[object_index] > 0):
  89. object_class = object_array[object_index]
  90. detected_objects.append({
  91. 'name': str(category_index.get(object_class).get('name')),
  92. 'score': object_array[object_index+1],
  93. 'ymin': int(object_array[object_index+2]),
  94. 'xmin': int(object_array[object_index+3]),
  95. 'ymax': int(object_array[object_index+4]),
  96. 'xmax': int(object_array[object_index+5])
  97. })
  98. object_index += 6
  99. DETECTED_OBJECTS = detected_objects
  100. time.sleep(0.1)
  101. class MqttPublisher(threading.Thread):
  102. def __init__(self, host, topic_prefix, object_classes, motion_flags):
  103. threading.Thread.__init__(self)
  104. self.client = mqtt.Client()
  105. self.client.will_set(topic_prefix+'/available', payload='offline', qos=1, retain=True)
  106. self.client.connect(host, 1883, 60)
  107. self.client.loop_start()
  108. self.client.publish(topic_prefix+'/available', 'online', retain=True)
  109. self.topic_prefix = topic_prefix
  110. self.object_classes = object_classes
  111. self.motion_flags = motion_flags
  112. def run(self):
  113. global DETECTED_OBJECTS
  114. last_sent_payload = ""
  115. last_motion = ""
  116. while True:
  117. # initialize the payload
  118. payload = {}
  119. for obj in self.object_classes:
  120. payload[obj] = []
  121. # loop over detected objects and populate
  122. # the payload
  123. detected_objects = DETECTED_OBJECTS.copy()
  124. for obj in detected_objects:
  125. if obj['name'] in self.object_classes:
  126. payload[obj['name']].append(obj)
  127. new_payload = json.dumps(payload, sort_keys=True)
  128. if new_payload != last_sent_payload:
  129. last_sent_payload = new_payload
  130. self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
  131. motion_status = 'OFF'
  132. if any(obj.value == 1 for obj in self.motion_flags):
  133. motion_status = 'ON'
  134. if motion_status != last_motion:
  135. last_motion = motion_status
  136. self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
  137. time.sleep(0.1)
  138. def main():
  139. # Parse selected regions
  140. regions = []
  141. for region_string in REGIONS.split(':'):
  142. region_parts = region_string.split(',')
  143. regions.append({
  144. 'size': int(region_parts[0]),
  145. 'x_offset': int(region_parts[1]),
  146. 'y_offset': int(region_parts[2]),
  147. 'min_object_size': int(region_parts[3]),
  148. # shared value for signaling to the capture process that we are ready for the next frame
  149. # (1 for ready 0 for not ready)
  150. 'ready_for_frame': mp.Value('i', 1),
  151. # shared value for motion detection signal (1 for motion 0 for no motion)
  152. 'motion_detected': mp.Value('i', 0),
  153. # create shared array for storing 10 detected objects
  154. # note: this must be a double even though the value you are storing
  155. # is a float. otherwise it stops updating the value in shared
  156. # memory. probably something to do with the size of the memory block
  157. 'output_array': mp.Array(ctypes.c_double, 6*10)
  158. })
  159. # capture a single frame and check the frame shape so the correct array
  160. # size can be allocated in memory
  161. video = cv2.VideoCapture(RTSP_URL)
  162. ret, frame = video.read()
  163. if ret:
  164. frame_shape = frame.shape
  165. else:
  166. print("Unable to capture video stream")
  167. exit(1)
  168. video.release()
  169. # compute the flattened array length from the array shape
  170. flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
  171. # create shared array for storing the full frame image data
  172. shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
  173. # create shared value for storing the frame_time
  174. shared_frame_time = mp.Value('d', 0.0)
  175. # shape current frame so it can be treated as an image
  176. frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
  177. capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
  178. shared_frame_time, [region['ready_for_frame'] for region in regions], frame_shape))
  179. capture_process.daemon = True
  180. detection_processes = []
  181. for index, region in enumerate(regions):
  182. detection_process = mp.Process(target=process_frames, args=(shared_arr,
  183. region['output_array'],
  184. shared_frame_time,
  185. region['motion_detected'],
  186. frame_shape,
  187. region['size'], region['x_offset'], region['y_offset']))
  188. detection_process.daemon = True
  189. detection_processes.append(detection_process)
  190. motion_processes = []
  191. for index, region in enumerate(regions):
  192. motion_process = mp.Process(target=detect_motion, args=(shared_arr,
  193. shared_frame_time,
  194. region['ready_for_frame'],
  195. region['motion_detected'],
  196. frame_shape,
  197. region['size'], region['x_offset'], region['y_offset'],
  198. region['min_object_size'],
  199. True))
  200. motion_process.daemon = True
  201. motion_processes.append(motion_process)
  202. object_parser = ObjectParser([region['output_array'] for region in regions])
  203. object_parser.start()
  204. mqtt_publisher = MqttPublisher(MQTT_HOST, MQTT_TOPIC_PREFIX,
  205. MQTT_OBJECT_CLASSES.split(','),
  206. [region['motion_detected'] for region in regions])
  207. mqtt_publisher.start()
  208. capture_process.start()
  209. print("capture_process pid ", capture_process.pid)
  210. for detection_process in detection_processes:
  211. detection_process.start()
  212. print("detection_process pid ", detection_process.pid)
  213. for motion_process in motion_processes:
  214. motion_process.start()
  215. print("motion_process pid ", motion_process.pid)
  216. app = Flask(__name__)
  217. @app.route('/')
  218. def index():
  219. # return a multipart response
  220. return Response(imagestream(),
  221. mimetype='multipart/x-mixed-replace; boundary=frame')
  222. def imagestream():
  223. global DETECTED_OBJECTS
  224. while True:
  225. # max out at 5 FPS
  226. time.sleep(0.2)
  227. # make a copy of the current detected objects
  228. detected_objects = DETECTED_OBJECTS.copy()
  229. # make a copy of the current frame
  230. frame = frame_arr.copy()
  231. # convert to RGB for drawing
  232. frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
  233. # draw the bounding boxes on the screen
  234. for obj in detected_objects:
  235. vis_util.draw_bounding_box_on_image_array(frame,
  236. obj['ymin'],
  237. obj['xmin'],
  238. obj['ymax'],
  239. obj['xmax'],
  240. color='red',
  241. thickness=2,
  242. display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
  243. use_normalized_coordinates=False)
  244. for region in regions:
  245. color = (255,255,255)
  246. if region['motion_detected'].value == 1:
  247. color = (0,255,0)
  248. cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
  249. (region['x_offset']+region['size'], region['y_offset']+region['size']),
  250. color, 2)
  251. cv2.putText(frame, datetime.datetime.now().strftime("%H:%M:%S"), (1125, 20),
  252. cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
  253. # convert back to BGR
  254. frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
  255. # encode the image into a jpg
  256. ret, jpg = cv2.imencode('.jpg', frame)
  257. yield (b'--frame\r\n'
  258. b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
  259. app.run(host='0.0.0.0', debug=False)
  260. capture_process.join()
  261. for detection_process in detection_processes:
  262. detection_process.join()
  263. for motion_process in motion_processes:
  264. motion_process.join()
  265. object_parser.join()
  266. mqtt_publisher.join()
  267. # convert shared memory array into numpy array
  268. def tonumpyarray(mp_arr):
  269. return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
  270. # fetch the frames as fast a possible, only decoding the frames when the
  271. # detection_process has consumed the current frame
  272. def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
  273. # convert shared memory array into numpy and shape into image array
  274. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  275. # start the video capture
  276. video = cv2.VideoCapture(RTSP_URL)
  277. # keep the buffer small so we minimize old data
  278. video.set(cv2.CAP_PROP_BUFFERSIZE,1)
  279. while True:
  280. # grab the frame, but dont decode it yet
  281. ret = video.grab()
  282. # snapshot the time the frame was grabbed
  283. frame_time = datetime.datetime.now()
  284. if ret:
  285. # if the anyone is ready for the next frame decode it
  286. # otherwise skip this frame and move onto the next one
  287. if any(flag.value == 1 for flag in ready_for_frame_flags):
  288. # go ahead and decode the current frame
  289. ret, frame = video.retrieve()
  290. if ret:
  291. arr[:] = frame
  292. shared_frame_time.value = frame_time.timestamp()
  293. # signal to the detection_processes by setting the shared_frame_time
  294. for flag in ready_for_frame_flags:
  295. flag.value = 0
  296. else:
  297. # sleep a little to reduce CPU usage
  298. time.sleep(0.1)
  299. video.release()
  300. # do the actual object detection
  301. def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
  302. debug = True
  303. # shape shared input array into frame for processing
  304. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  305. # Load a (frozen) Tensorflow model into memory before the processing loop
  306. detection_graph = tf.Graph()
  307. with detection_graph.as_default():
  308. od_graph_def = tf.GraphDef()
  309. with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
  310. serialized_graph = fid.read()
  311. od_graph_def.ParseFromString(serialized_graph)
  312. tf.import_graph_def(od_graph_def, name='')
  313. sess = tf.Session(graph=detection_graph)
  314. no_frames_available = -1
  315. frame_time = 0.0
  316. while True:
  317. now = datetime.datetime.now().timestamp()
  318. # if there is no motion detected
  319. if shared_motion.value == 0:
  320. time.sleep(0.1)
  321. continue
  322. # if there isnt a new frame ready for processing
  323. if shared_frame_time.value == frame_time:
  324. # save the first time there were no frames available
  325. if no_frames_available == -1:
  326. no_frames_available = now
  327. # if there havent been any frames available in 30 seconds,
  328. # sleep to avoid using so much cpu if the camera feed is down
  329. if no_frames_available > 0 and (now - no_frames_available) > 30:
  330. time.sleep(1)
  331. print("sleeping because no frames have been available in a while")
  332. else:
  333. # rest a little bit to avoid maxing out the CPU
  334. time.sleep(0.1)
  335. continue
  336. # we got a valid frame, so reset the timer
  337. no_frames_available = -1
  338. # if the frame is more than 0.5 second old, ignore it
  339. if (now - shared_frame_time.value) > 0.5:
  340. # rest a little bit to avoid maxing out the CPU
  341. time.sleep(0.1)
  342. continue
  343. # make a copy of the cropped frame
  344. cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
  345. frame_time = shared_frame_time.value
  346. # convert to RGB
  347. cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
  348. # do the object detection
  349. objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, True)
  350. # copy the detected objects to the output array, filling the array when needed
  351. shared_output_arr[:] = objects + [0.0] * (60-len(objects))
  352. # do the actual motion detection
  353. def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
  354. # shape shared input array into frame for processing
  355. arr = tonumpyarray(shared_arr).reshape(frame_shape)
  356. no_frames_available = -1
  357. avg_frame = None
  358. last_motion = -1
  359. frame_time = 0.0
  360. motion_frames = 0
  361. while True:
  362. now = datetime.datetime.now().timestamp()
  363. # if it has been long enough since the last motion, clear the flag
  364. if last_motion > 0 and (now - last_motion) > 2:
  365. last_motion = -1
  366. shared_motion.value = 0
  367. # if there isnt a frame ready for processing
  368. if shared_frame_time.value == frame_time:
  369. # save the first time there were no frames available
  370. if no_frames_available == -1:
  371. no_frames_available = now
  372. # if there havent been any frames available in 30 seconds,
  373. # sleep to avoid using so much cpu if the camera feed is down
  374. if no_frames_available > 0 and (now - no_frames_available) > 30:
  375. time.sleep(1)
  376. print("sleeping because no frames have been available in a while")
  377. else:
  378. # rest a little bit to avoid maxing out the CPU
  379. time.sleep(0.1)
  380. if ready_for_frame.value == 0:
  381. ready_for_frame.value = 1
  382. continue
  383. # we got a valid frame, so reset the timer
  384. no_frames_available = -1
  385. # if the frame is more than 0.5 second old, discard it
  386. if (now - shared_frame_time.value) > 0.5:
  387. # signal that we need a new frame
  388. ready_for_frame.value = 1
  389. # rest a little bit to avoid maxing out the CPU
  390. time.sleep(0.1)
  391. continue
  392. # make a copy of the cropped frame
  393. cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
  394. frame_time = shared_frame_time.value
  395. # signal that the frame has been used so a new one will be ready
  396. ready_for_frame.value = 1
  397. # convert to grayscale
  398. gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
  399. # apply gaussian blur
  400. gray = cv2.GaussianBlur(gray, (21, 21), 0)
  401. if avg_frame is None:
  402. avg_frame = gray.copy().astype("float")
  403. continue
  404. # look at the delta from the avg_frame
  405. cv2.accumulateWeighted(gray, avg_frame, 0.5)
  406. frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
  407. thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
  408. # dilate the thresholded image to fill in holes, then find contours
  409. # on thresholded image
  410. thresh = cv2.dilate(thresh, None, iterations=2)
  411. cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
  412. cv2.CHAIN_APPROX_SIMPLE)
  413. cnts = imutils.grab_contours(cnts)
  414. # if there are no contours, there is no motion
  415. if len(cnts) < 1:
  416. motion_frames = 0
  417. continue
  418. motion_found = False
  419. # loop over the contours
  420. for c in cnts:
  421. # if the contour is big enough, count it as motion
  422. contour_area = cv2.contourArea(c)
  423. if contour_area > min_motion_area:
  424. motion_found = True
  425. if debug:
  426. cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
  427. x, y, w, h = cv2.boundingRect(c)
  428. cv2.putText(cropped_frame, str(contour_area), (x, y),
  429. cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
  430. else:
  431. break
  432. if motion_found:
  433. motion_frames += 1
  434. # if there have been enough consecutive motion frames, report motion
  435. if motion_frames >= 3:
  436. shared_motion.value = 1
  437. last_motion = now
  438. else:
  439. motion_frames = 0
  440. if debug and motion_frames > 0:
  441. cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
  442. if __name__ == '__main__':
  443. mp.freeze_support()
  444. main()