123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- import cv2
- import imutils
- import numpy as np
- from frigate.config import MotionConfig
- class MotionDetector:
- def __init__(self, frame_shape, config: MotionConfig):
- self.config = config
- self.frame_shape = frame_shape
- self.resize_factor = frame_shape[0] / config.frame_height
- self.motion_frame_size = (
- config.frame_height,
- config.frame_height * frame_shape[1] // frame_shape[0],
- )
- self.avg_frame = np.zeros(self.motion_frame_size, np.float)
- self.avg_delta = np.zeros(self.motion_frame_size, np.float)
- self.motion_frame_count = 0
- self.frame_counter = 0
- resized_mask = cv2.resize(
- config.mask,
- dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
- interpolation=cv2.INTER_LINEAR,
- )
- self.mask = np.where(resized_mask == [0])
- self.save_images = False
- def detect(self, frame):
- motion_boxes = []
- gray = frame[0 : self.frame_shape[0], 0 : self.frame_shape[1]]
- # resize frame
- resized_frame = cv2.resize(
- gray,
- dsize=(self.motion_frame_size[1], self.motion_frame_size[0]),
- interpolation=cv2.INTER_LINEAR,
- )
- # Improve contrast
- minval = np.percentile(resized_frame, 4)
- maxval = np.percentile(resized_frame, 96)
- resized_frame = np.clip(resized_frame, minval, maxval)
- resized_frame = (((resized_frame - minval) / (maxval - minval)) * 255).astype(
- np.uint8
- )
- # mask frame
- resized_frame[self.mask] = [255]
- # it takes ~30 frames to establish a baseline
- # dont bother looking for motion
- if self.frame_counter < 30:
- self.frame_counter += 1
- else:
- if self.save_images:
- self.frame_counter += 1
- # compare to average
- frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
- # compute the average delta over the past few frames
- # higher values mean the current frame impacts the delta a lot, and a single raindrop may
- # register as motion, too low and a fast moving person wont be detected as motion
- cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
- # compute the threshold image for the current frame
- current_thresh = cv2.threshold(
- frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY
- )[1]
- # black out everything in the avg_delta where there isnt motion in the current frame
- avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
- avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
- # then look for deltas above the threshold, but only in areas where there is a delta
- # in the current frame. this prevents deltas from previous frames from being included
- thresh = cv2.threshold(
- avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY
- )[1]
- # dilate the thresholded image to fill in holes, then find contours
- # on thresholded image
- thresh_dilated = cv2.dilate(thresh, None, iterations=2)
- cnts = cv2.findContours(
- thresh_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
- )
- cnts = imutils.grab_contours(cnts)
- # loop over the contours
- for c in cnts:
- # if the contour is big enough, count it as motion
- contour_area = cv2.contourArea(c)
- if contour_area > self.config.contour_area:
- x, y, w, h = cv2.boundingRect(c)
- motion_boxes.append(
- (
- int(x * self.resize_factor),
- int(y * self.resize_factor),
- int((x + w) * self.resize_factor),
- int((y + h) * self.resize_factor),
- )
- )
- if self.save_images:
- thresh_dilated = cv2.cvtColor(thresh_dilated, cv2.COLOR_GRAY2BGR)
- # print("--------")
- # print(self.frame_counter)
- for c in cnts:
- contour_area = cv2.contourArea(c)
- # print(contour_area)
- if contour_area > self.config.contour_area:
- x, y, w, h = cv2.boundingRect(c)
- cv2.rectangle(
- thresh_dilated,
- (x, y),
- (x + w, y + h),
- (0, 0, 255),
- 2,
- )
- # print("--------")
- image_row_1 = cv2.hconcat(
- [
- cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
- cv2.cvtColor(avg_delta_image, cv2.COLOR_GRAY2BGR),
- ]
- )
- image_row_2 = cv2.hconcat(
- [cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR), thresh_dilated]
- )
- combined_image = cv2.vconcat([image_row_1, image_row_2])
- cv2.imwrite(f"motion/motion-{self.frame_counter}.jpg", combined_image)
- if len(motion_boxes) > 0:
- self.motion_frame_count += 1
- if self.motion_frame_count >= 10:
- # only average in the current frame if the difference persists for a bit
- cv2.accumulateWeighted(
- resized_frame, self.avg_frame, self.config.frame_alpha
- )
- else:
- # when no motion, just keep averaging the frames together
- cv2.accumulateWeighted(
- resized_frame, self.avg_frame, self.config.frame_alpha
- )
- self.motion_frame_count = 0
- return motion_boxes
|