Sen descrición

Blake Blackshear 0f5dfea9de add support for rockchip hwaccel %!s(int64=3) %!d(string=hai) anos
.devcontainer b91b0d39dd updated devcontainer %!s(int64=3) %!d(string=hai) anos
.github bddde74c06 Update issue templates %!s(int64=3) %!d(string=hai) anos
docker 0f5dfea9de add support for rockchip hwaccel %!s(int64=3) %!d(string=hai) anos
docs e6cdb6a7a2 install docs clarification %!s(int64=3) %!d(string=hai) anos
frigate 1d25936f31 add region/bbox/area to event table %!s(int64=3) %!d(string=hai) anos
migrations 1d25936f31 add region/bbox/area to event table %!s(int64=3) %!d(string=hai) anos
web 1d25936f31 add region/bbox/area to event table %!s(int64=3) %!d(string=hai) anos
.dockerignore dada764d2c expand dockerignore %!s(int64=3) %!d(string=hai) anos
.gitignore 84a0827aee Use dataclasses for config handling %!s(int64=4) %!d(string=hai) anos
.pylintrc 040ffda687 use fstr log style %!s(int64=4) %!d(string=hai) anos
LICENSE 53ccc903da switch to MIT license %!s(int64=4) %!d(string=hai) anos
Makefile 0f5dfea9de add support for rockchip hwaccel %!s(int64=3) %!d(string=hai) anos
README.md 45798d6d14 clean house on clips %!s(int64=3) %!d(string=hai) anos
benchmark.py f946813ccb support multiple coral devices (fixes #100) %!s(int64=4) %!d(string=hai) anos
docker-compose.yml c70419bd0b update birdseye layout calculations %!s(int64=3) %!d(string=hai) anos
labelmap.txt acb75fa02d refactor and reduce false positives %!s(int64=4) %!d(string=hai) anos

README.md

logo

Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.

  • Tight integration with Home Assistant via a custom component
  • Designed to minimize resource use and maximize performance by only looking for objects when and where it is necessary
  • Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
  • Uses a very low overhead motion detection to determine where to run object detection
  • Object detection with TensorFlow runs in separate processes for maximum FPS
  • Communicates over MQTT for easy integration into other systems
  • Records video with retention settings based on detected objects
  • 24/7 recording
  • Re-streaming via RTMP to reduce the number of connections to your camera

Documentation

View the documentation at https://blakeblackshear.github.io/frigate

Donations

If you would like to make a donation to support development, please use Github Sponsors.

Screenshots

Integration into Home Assistant

Also comes with a builtin UI:

Events