123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487 |
- import copy
- import datetime
- import hashlib
- import itertools
- import json
- import logging
- import os
- import queue
- import threading
- import time
- from collections import Counter, defaultdict
- from statistics import mean, median
- from typing import Callable, Dict
- import cv2
- import matplotlib.pyplot as plt
- import numpy as np
- from frigate.config import FrigateConfig, CameraConfig
- from frigate.edgetpu import load_labels
- from frigate.util import SharedMemoryFrameManager, draw_box_with_label
- logger = logging.getLogger(__name__)
- PATH_TO_LABELS = '/labelmap.txt'
- LABELS = load_labels(PATH_TO_LABELS)
- cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
- COLOR_MAP = {}
- for key, val in LABELS.items():
- COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
- def on_edge(box, frame_shape):
- if (
- box[0] == 0 or
- box[1] == 0 or
- box[2] == frame_shape[1]-1 or
- box[3] == frame_shape[0]-1
- ):
- return True
- def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
- # larger is better
- # cutoff images are less ideal, but they should also be smaller?
- # better scores are obviously better too
- # if the new_thumb is on an edge, and the current thumb is not
- if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
- return False
- # if the score is better by more than 5%
- if new_obj['score'] > current_thumb['score']+.05:
- return True
-
- # if the area is 10% larger
- if new_obj['area'] > current_thumb['area']*1.1:
- return True
-
- return False
- class TrackedObject():
- def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
- self.obj_data = obj_data
- self.camera = camera
- self.camera_config = camera_config
- self.frame_cache = frame_cache
- self.current_zones = []
- self.entered_zones = set()
- self.false_positive = True
- self.top_score = self.computed_score = 0.0
- self.thumbnail_data = {
- 'frame_time': obj_data['frame_time'],
- 'box': obj_data['box'],
- 'area': obj_data['area'],
- 'region': obj_data['region'],
- 'score': obj_data['score']
- }
- self.frame = None
- self._snapshot_jpg_time = 0
- ret, jpg = cv2.imencode('.jpg', np.zeros((300,300,3), np.uint8))
- self._snapshot_jpg = jpg.tobytes()
- # start the score history
- self.score_history = [self.obj_data['score']]
- def _is_false_positive(self):
- # once a true positive, always a true positive
- if not self.false_positive:
- return False
- threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
- if self.computed_score < threshold:
- return True
- return False
- def compute_score(self):
- scores = self.score_history[:]
- # pad with zeros if you dont have at least 3 scores
- if len(scores) < 3:
- scores += [0.0]*(3 - len(scores))
- return median(scores)
-
- def update(self, current_frame_time, obj_data):
- self.obj_data.update(obj_data)
- # if the object is not in the current frame, add a 0.0 to the score history
- if self.obj_data['frame_time'] != current_frame_time:
- self.score_history.append(0.0)
- else:
- self.score_history.append(self.obj_data['score'])
- # only keep the last 10 scores
- if len(self.score_history) > 10:
- self.score_history = self.score_history[-10:]
- # calculate if this is a false positive
- self.computed_score = self.compute_score()
- if self.computed_score > self.top_score:
- self.top_score = self.computed_score
- self.false_positive = self._is_false_positive()
- # determine if this frame is a better thumbnail
- if is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape):
- self.thumbnail_data = {
- 'frame_time': self.obj_data['frame_time'],
- 'box': self.obj_data['box'],
- 'area': self.obj_data['area'],
- 'region': self.obj_data['region'],
- 'score': self.obj_data['score']
- }
-
- # check zones
- current_zones = []
- bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
- # check each zone
- for name, zone in self.camera_config.zones.items():
- contour = zone.contour
- # check if the object is in the zone
- if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
- # if the object passed the filters once, dont apply again
- if name in self.current_zones or not zone_filtered(self, zone.filters):
- current_zones.append(name)
- self.entered_zones.add(name)
-
- self.current_zones = current_zones
-
- def to_dict(self):
- return {
- 'id': self.obj_data['id'],
- 'camera': self.camera,
- 'frame_time': self.obj_data['frame_time'],
- 'label': self.obj_data['label'],
- 'top_score': self.top_score,
- 'false_positive': self.false_positive,
- 'start_time': self.obj_data['start_time'],
- 'end_time': self.obj_data.get('end_time', None),
- 'score': self.obj_data['score'],
- 'box': self.obj_data['box'],
- 'area': self.obj_data['area'],
- 'region': self.obj_data['region'],
- 'current_zones': self.current_zones.copy(),
- 'entered_zones': list(self.entered_zones).copy()
- }
-
- def get_jpg_bytes(self):
- if self._snapshot_jpg_time == self.thumbnail_data['frame_time']:
- return self._snapshot_jpg
-
- if not self.thumbnail_data['frame_time'] in self.frame_cache:
- logger.error(f"Unable to create thumbnail for {self.obj_data['id']}")
- logger.error(f"Looking for frame_time of {self.thumbnail_data['frame_time']}")
- logger.error(f"Thumbnail frames: {','.join([str(k) for k in self.frame_cache.keys()])}")
- return self._snapshot_jpg
- # TODO: crop first to avoid converting the entire frame?
- snapshot_config = self.camera_config.snapshots
- best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
- if snapshot_config.draw_bounding_boxes:
- thickness = 2
- color = COLOR_MAP[self.obj_data['label']]
- box = self.thumbnail_data['box']
- draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'],
- f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
-
- if snapshot_config.crop_to_region:
- region = self.thumbnail_data['region']
- best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
- if snapshot_config.height:
- height = snapshot_config.height
- width = int(height*best_frame.shape[1]/best_frame.shape[0])
- best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
-
- if snapshot_config.show_timestamp:
- time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
- size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
- text_width = size[0][0]
- desired_size = max(200, 0.33*best_frame.shape[1])
- font_scale = desired_size/text_width
- cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
- fontScale=font_scale, color=(255, 255, 255), thickness=2)
- ret, jpg = cv2.imencode('.jpg', best_frame)
- if ret:
- self._snapshot_jpg = jpg.tobytes()
-
- return self._snapshot_jpg
- def zone_filtered(obj: TrackedObject, object_config):
- object_name = obj.obj_data['label']
- if object_name in object_config:
- obj_settings = object_config[object_name]
- # if the min area is larger than the
- # detected object, don't add it to detected objects
- if obj_settings.min_area > obj.obj_data['area']:
- return True
-
- # if the detected object is larger than the
- # max area, don't add it to detected objects
- if obj_settings.max_area < obj.obj_data['area']:
- return True
- # if the score is lower than the threshold, skip
- if obj_settings.threshold > obj.computed_score:
- return True
-
- return False
- # Maintains the state of a camera
- class CameraState():
- def __init__(self, name, config, frame_manager):
- self.name = name
- self.config = config
- self.camera_config = config.cameras[name]
- self.frame_manager = frame_manager
- self.best_objects: Dict[str, TrackedObject] = {}
- self.object_status = defaultdict(lambda: 'OFF')
- self.tracked_objects: Dict[str, TrackedObject] = {}
- self.frame_cache = {}
- self.zone_objects = defaultdict(lambda: [])
- self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
- self.current_frame_lock = threading.Lock()
- self.current_frame_time = 0.0
- self.previous_frame_id = None
- self.callbacks = defaultdict(lambda: [])
- def get_current_frame(self, draw=False):
- with self.current_frame_lock:
- frame_copy = np.copy(self._current_frame)
- frame_time = self.current_frame_time
- tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
-
- frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
- # draw on the frame
- if draw:
- # draw the bounding boxes on the frame
- for obj in tracked_objects.values():
- thickness = 2
- color = COLOR_MAP[obj['label']]
-
- if obj['frame_time'] != frame_time:
- thickness = 1
- color = (255,0,0)
- # draw the bounding boxes on the frame
- box = obj['box']
- draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
- # draw the regions on the frame
- region = obj['region']
- cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
-
- if self.camera_config.snapshots.show_timestamp:
- time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
- cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
- if self.camera_config.snapshots.draw_zones:
- for name, zone in self.camera_config.zones.items():
- thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
- cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
-
- return frame_copy
- def on(self, event_type: str, callback: Callable[[Dict], None]):
- self.callbacks[event_type].append(callback)
- def update(self, frame_time, current_detections):
- self.current_frame_time = frame_time
- # get the new frame
- frame_id = f"{self.name}{frame_time}"
- current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
- current_ids = current_detections.keys()
- previous_ids = self.tracked_objects.keys()
- removed_ids = list(set(previous_ids).difference(current_ids))
- new_ids = list(set(current_ids).difference(previous_ids))
- updated_ids = list(set(current_ids).intersection(previous_ids))
- for id in new_ids:
- new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
- # call event handlers
- for c in self.callbacks['start']:
- c(self.name, new_obj)
-
- for id in updated_ids:
- updated_obj = self.tracked_objects[id]
- updated_obj.update(frame_time, current_detections[id])
- if (not updated_obj.false_positive
- and updated_obj.thumbnail_data['frame_time'] == frame_time
- and frame_time not in self.frame_cache):
- logging.info(f"Adding {frame_time} to cache.")
- self.frame_cache[frame_time] = np.copy(current_frame)
- # call event handlers
- for c in self.callbacks['update']:
- c(self.name, updated_obj)
-
- for id in removed_ids:
- # publish events to mqtt
- removed_obj = self.tracked_objects[id]
- removed_obj.obj_data['end_time'] = frame_time
- for c in self.callbacks['end']:
- c(self.name, removed_obj)
- del self.tracked_objects[id]
- # TODO: can i switch to looking this up and only changing when an event ends?
- # maybe make an api endpoint that pulls the thumbnail from the file system?
- # maintain best objects
- for obj in self.tracked_objects.values():
- object_type = obj.obj_data['label']
- # if the object's thumbnail is not from the current frame
- if obj.thumbnail_data['frame_time'] != self.current_frame_time or obj.false_positive:
- continue
- if object_type in self.best_objects:
- current_best = self.best_objects[object_type]
- now = datetime.datetime.now().timestamp()
- # if the object is a higher score than the current best score
- # or the current object is older than desired, use the new object
- if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
- or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
- self.best_objects[object_type] = obj
- for c in self.callbacks['snapshot']:
- c(self.name, self.best_objects[object_type])
- else:
- self.best_objects[object_type] = obj
- for c in self.callbacks['snapshot']:
- c(self.name, self.best_objects[object_type])
-
- # update overall camera state for each object type
- obj_counter = Counter()
- for obj in self.tracked_objects.values():
- if not obj.false_positive:
- obj_counter[obj.obj_data['label']] += 1
-
- # report on detected objects
- for obj_name, count in obj_counter.items():
- new_status = 'ON' if count > 0 else 'OFF'
- if new_status != self.object_status[obj_name]:
- self.object_status[obj_name] = new_status
- for c in self.callbacks['object_status']:
- c(self.name, obj_name, new_status)
- # expire any objects that are ON and no longer detected
- expired_objects = [obj_name for obj_name, status in self.object_status.items() if status == 'ON' and not obj_name in obj_counter]
- for obj_name in expired_objects:
- self.object_status[obj_name] = 'OFF'
- for c in self.callbacks['object_status']:
- c(self.name, obj_name, 'OFF')
- for c in self.callbacks['snapshot']:
- c(self.name, self.best_objects[obj_name])
-
- # cleanup thumbnail frame cache
- current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
- current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
- thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
- for t in thumb_frames_to_delete:
- logging.info(f"Removing {t} from cache.")
- del self.frame_cache[t]
-
- with self.current_frame_lock:
- self._current_frame = current_frame
- if not self.previous_frame_id is None:
- self.frame_manager.delete(self.previous_frame_id)
- self.previous_frame_id = frame_id
- class TrackedObjectProcessor(threading.Thread):
- def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, stop_event):
- threading.Thread.__init__(self)
- self.name = "detected_frames_processor"
- self.config = config
- self.client = client
- self.topic_prefix = topic_prefix
- self.tracked_objects_queue = tracked_objects_queue
- self.event_queue = event_queue
- self.stop_event = stop_event
- self.camera_states: Dict[str, CameraState] = {}
- self.frame_manager = SharedMemoryFrameManager()
- def start(camera, obj: TrackedObject):
- self.client.publish(f"{self.topic_prefix}/{camera}/events/start", json.dumps(obj.to_dict()), retain=False)
- self.event_queue.put(('start', camera, obj.to_dict()))
- def update(camera, obj: TrackedObject):
- pass
- def end(camera, obj: TrackedObject):
- self.client.publish(f"{self.topic_prefix}/{camera}/events/end", json.dumps(obj.to_dict()), retain=False)
- if self.config.cameras[camera].save_clips.enabled and not obj.false_positive:
- thumbnail_file_name = f"{camera}-{obj.obj_data['id']}.jpg"
- with open(os.path.join(self.config.save_clips.clips_dir, thumbnail_file_name), 'wb') as f:
- f.write(obj.get_jpg_bytes())
- self.event_queue.put(('end', camera, obj.to_dict()))
-
- def snapshot(camera, obj: TrackedObject):
- self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", obj.get_jpg_bytes(), retain=True)
-
- def object_status(camera, object_name, status):
- self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
- for camera in self.config.cameras.keys():
- camera_state = CameraState(camera, self.config, self.frame_manager)
- camera_state.on('start', start)
- camera_state.on('update', update)
- camera_state.on('end', end)
- camera_state.on('snapshot', snapshot)
- camera_state.on('object_status', object_status)
- self.camera_states[camera] = camera_state
- # {
- # 'zone_name': {
- # 'person': ['camera_1', 'camera_2']
- # }
- # }
- self.zone_data = defaultdict(lambda: defaultdict(lambda: set()))
-
- def get_best(self, camera, label):
- # TODO: need a lock here
- camera_state = self.camera_states[camera]
- if label in camera_state.best_objects:
- best_obj = camera_state.best_objects[label]
- best = best_obj.to_dict()
- best['frame'] = camera_state.frame_cache[best_obj.thumbnail_data['frame_time']]
- return best
- else:
- return {}
-
- def get_current_frame(self, camera, draw=False):
- return self.camera_states[camera].get_current_frame(draw)
- def run(self):
- while True:
- if self.stop_event.is_set():
- logger.info(f"Exiting object processor...")
- break
- try:
- camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get(True, 10)
- except queue.Empty:
- continue
- camera_state = self.camera_states[camera]
- camera_state.update(frame_time, current_tracked_objects)
- # update zone status for each label
- for zone in self.config.cameras[camera].zones.keys():
- # get labels for current camera and all labels in current zone
- labels_for_camera = set([obj.obj_data['label'] for obj in camera_state.tracked_objects.values() if zone in obj.current_zones and not obj.false_positive])
- labels_to_check = labels_for_camera | set(self.zone_data[zone].keys())
- # for each label in zone
- for label in labels_to_check:
- camera_list = self.zone_data[zone][label]
- # remove or add the camera to the list for the current label
- previous_state = len(camera_list) > 0
- if label in labels_for_camera:
- camera_list.add(camera_state.name)
- elif camera_state.name in camera_list:
- camera_list.remove(camera_state.name)
- new_state = len(camera_list) > 0
- # if the value is changing, send over MQTT
- if previous_state == False and new_state == True:
- self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
- elif previous_state == True and new_state == False:
- self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
|