123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- import os
- import time
- import cv2
- import numpy as np
- from flask import (
- Flask, Blueprint, jsonify, request, Response, current_app, make_response
- )
- from peewee import SqliteDatabase
- from playhouse.shortcuts import model_to_dict
- from frigate.models import Event
- bp = Blueprint('frigate', __name__)
- def create_app(frigate_config, database: SqliteDatabase, camera_metrics, detectors, detected_frames_processor):
- app = Flask(__name__)
- @app.before_request
- def _db_connect():
- database.connect()
- @app.teardown_request
- def _db_close(exc):
- if not database.is_closed():
- database.close()
- app.frigate_config = frigate_config
- app.camera_metrics = camera_metrics
- app.detectors = detectors
- app.detected_frames_processor = detected_frames_processor
-
- app.register_blueprint(bp)
- return app
- @bp.route('/')
- def is_healthy():
- return "Frigate is running. Alive and healthy!"
- @bp.route('/events')
- def events():
- events = Event.select()
- return jsonify([model_to_dict(e) for e in events])
- @bp.route('/debug/stats')
- def stats():
- camera_metrics = current_app.camera_metrics
- stats = {}
- total_detection_fps = 0
- for name, camera_stats in camera_metrics.items():
- total_detection_fps += camera_stats['detection_fps'].value
- stats[name] = {
- 'camera_fps': round(camera_stats['camera_fps'].value, 2),
- 'process_fps': round(camera_stats['process_fps'].value, 2),
- 'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
- 'detection_fps': round(camera_stats['detection_fps'].value, 2),
- 'pid': camera_stats['process'].pid,
- 'capture_pid': camera_stats['capture_process'].pid
- }
-
- stats['detectors'] = {}
- for name, detector in current_app.detectors.items():
- stats['detectors'][name] = {
- 'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
- 'detection_start': detector.detection_start.value,
- 'pid': detector.detect_process.pid
- }
- stats['detection_fps'] = round(total_detection_fps, 2)
- return jsonify(stats)
- @bp.route('/<camera_name>/<label>/best.jpg')
- def best(camera_name, label):
- if camera_name in current_app.frigate_config['cameras']:
- best_object = current_app.detected_frames_processor.get_best(camera_name, label)
- best_frame = best_object.get('frame')
- if best_frame is None:
- best_frame = np.zeros((720,1280,3), np.uint8)
- else:
- best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
-
- crop = bool(request.args.get('crop', 0, type=int))
- if crop:
- region = best_object.get('region', [0,0,300,300])
- best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
-
- height = int(request.args.get('h', str(best_frame.shape[0])))
- width = int(height*best_frame.shape[1]/best_frame.shape[0])
- best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
- ret, jpg = cv2.imencode('.jpg', best_frame)
- response = make_response(jpg.tobytes())
- response.headers['Content-Type'] = 'image/jpg'
- return response
- else:
- return "Camera named {} not found".format(camera_name), 404
- @bp.route('/<camera_name>')
- def mjpeg_feed(camera_name):
- fps = int(request.args.get('fps', '3'))
- height = int(request.args.get('h', '360'))
- if camera_name in current_app.frigate_config['cameras']:
- # return a multipart response
- return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height),
- mimetype='multipart/x-mixed-replace; boundary=frame')
- else:
- return "Camera named {} not found".format(camera_name), 404
- @bp.route('/<camera_name>/latest.jpg')
- def latest_frame(camera_name):
- if camera_name in current_app.frigate_config['cameras']:
- # max out at specified FPS
- frame = current_app.detected_frames_processor.get_current_frame(camera_name)
- if frame is None:
- frame = np.zeros((720,1280,3), np.uint8)
- height = int(request.args.get('h', str(frame.shape[0])))
- width = int(height*frame.shape[1]/frame.shape[0])
- frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
- ret, jpg = cv2.imencode('.jpg', frame)
- response = make_response(jpg.tobytes())
- response.headers['Content-Type'] = 'image/jpg'
- return response
- else:
- return "Camera named {} not found".format(camera_name), 404
-
- def imagestream(detected_frames_processor, camera_name, fps, height):
- while True:
- # max out at specified FPS
- time.sleep(1/fps)
- frame = detected_frames_processor.get_current_frame(camera_name, draw=True)
- if frame is None:
- frame = np.zeros((height,int(height*16/9),3), np.uint8)
- width = int(height*frame.shape[1]/frame.shape[0])
- frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
- ret, jpg = cv2.imencode('.jpg', frame)
- yield (b'--frame\r\n'
- b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|