123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- import datetime
- import json
- import logging
- import multiprocessing as mp
- import os
- import subprocess as sp
- import sys
- from unittest import TestCase, main
- import click
- import cv2
- import numpy as np
- from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
- from frigate.edgetpu import LocalObjectDetector
- from frigate.motion import MotionDetector
- from frigate.object_processing import COLOR_MAP, CameraState
- from frigate.objects import ObjectTracker
- from frigate.util import (DictFrameManager, EventsPerSecond,
- SharedMemoryFrameManager, draw_box_with_label)
- from frigate.video import (capture_frames, process_frames,
- start_or_restart_ffmpeg)
- logging.basicConfig()
- logging.root.setLevel(logging.DEBUG)
- logger = logging.getLogger(__name__)
- def get_frame_shape(source):
- ffprobe_cmd = " ".join([
- 'ffprobe',
- '-v',
- 'panic',
- '-show_error',
- '-show_streams',
- '-of',
- 'json',
- '"'+source+'"'
- ])
- p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
- (output, err) = p.communicate()
- p_status = p.wait()
- info = json.loads(output)
- video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
- if video_info['height'] != 0 and video_info['width'] != 0:
- return (video_info['height'], video_info['width'], 3)
-
- # fallback to using opencv if ffprobe didnt succeed
- video = cv2.VideoCapture(source)
- ret, frame = video.read()
- frame_shape = frame.shape
- video.release()
- return frame_shape
- class ProcessClip():
- def __init__(self, clip_path, frame_shape, config: FrigateConfig):
- self.clip_path = clip_path
- self.camera_name = 'camera'
- self.config = config
- self.camera_config = self.config.cameras['camera']
- self.frame_shape = self.camera_config.frame_shape
- self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
- self.frame_manager = SharedMemoryFrameManager()
- self.frame_queue = mp.Queue()
- self.detected_objects_queue = mp.Queue()
- self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
- def load_frames(self):
- fps = EventsPerSecond()
- skipped_fps = EventsPerSecond()
- current_frame = mp.Value('d', 0.0)
- frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
- ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
- capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
- self.frame_queue, fps, skipped_fps, current_frame)
- ffmpeg_process.wait()
- ffmpeg_process.communicate()
-
- def process_frames(self, objects_to_track=['person'], object_filters={}):
- mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
- mask[:] = 255
- motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
- object_detector = LocalObjectDetector(labels='/labelmap.txt')
- object_tracker = ObjectTracker(self.camera_config.detect)
- process_info = {
- 'process_fps': mp.Value('d', 0.0),
- 'detection_fps': mp.Value('d', 0.0),
- 'detection_frame': mp.Value('d', 0.0)
- }
- stop_event = mp.Event()
- model_shape = (self.config.model.height, self.config.model.width)
- process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
- self.frame_manager, motion_detector, object_detector, object_tracker,
- self.detected_objects_queue, process_info,
- objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
-
- def top_object(self, debug_path=None):
- obj_detected = False
- top_computed_score = 0.0
- def handle_event(name, obj, frame_time):
- nonlocal obj_detected
- nonlocal top_computed_score
- if obj.computed_score > top_computed_score:
- top_computed_score = obj.computed_score
- if not obj.false_positive:
- obj_detected = True
- self.camera_state.on('new', handle_event)
- self.camera_state.on('update', handle_event)
- while(not self.detected_objects_queue.empty()):
- camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
- if not debug_path is None:
- self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
- self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
-
- self.frame_manager.delete(self.camera_state.previous_frame_id)
-
- return {
- 'object_detected': obj_detected,
- 'top_score': top_computed_score
- }
-
- def save_debug_frame(self, debug_path, frame_time, tracked_objects):
- current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
- # draw the bounding boxes on the frame
- for obj in tracked_objects:
- thickness = 2
- color = (0,0,175)
- if obj['frame_time'] != frame_time:
- thickness = 1
- color = (255,0,0)
- else:
- color = (255,255,0)
- # draw the bounding boxes on the frame
- box = obj['box']
- draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
- # draw the regions on the frame
- region = obj['region']
- draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
-
- cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
- @click.command()
- @click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
- @click.option("-l", "--label", default='person', help="Label name to detect.")
- @click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
- @click.option("-s", "--scores", default=None, help="File to save csv of top scores")
- @click.option("--debug-path", default=None, help="Path to output frames for debugging.")
- def process(path, label, threshold, scores, debug_path):
- clips = []
- if os.path.isdir(path):
- files = os.listdir(path)
- files.sort()
- clips = [os.path.join(path, file) for file in files]
- elif os.path.isfile(path):
- clips.append(path)
- json_config = {
- 'mqtt': {
- 'host': 'mqtt'
- },
- 'cameras': {
- 'camera': {
- 'ffmpeg': {
- 'inputs': [
- { 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
- ]
- },
- 'height': 1920,
- 'width': 1080
- }
- }
- }
- results = []
- for c in clips:
- logger.info(c)
- frame_shape = get_frame_shape(c)
-
- json_config['cameras']['camera']['height'] = frame_shape[0]
- json_config['cameras']['camera']['width'] = frame_shape[1]
- json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
- config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
- process_clip = ProcessClip(c, frame_shape, config)
- process_clip.load_frames()
- process_clip.process_frames(objects_to_track=[label])
- results.append((c, process_clip.top_object(debug_path)))
- if not scores is None:
- with open(scores, 'w') as writer:
- for result in results:
- writer.write(f"{result[0]},{result[1]['top_score']}\n")
-
- positive_count = sum(1 for result in results if result[1]['object_detected'])
- print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
- if __name__ == '__main__':
- process()
|