123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- import os
- import time
- import datetime
- import cv2
- import queue
- import threading
- import ctypes
- import pyarrow.plasma as plasma
- import multiprocessing as mp
- import subprocess as sp
- import numpy as np
- import copy
- import itertools
- import json
- import base64
- from typing import Dict, List
- from collections import defaultdict
- from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, FrameManager, PlasmaFrameManager
- from frigate.objects import ObjectTracker
- from frigate.edgetpu import RemoteObjectDetector
- from frigate.motion import MotionDetector
- def get_frame_shape(source):
- ffprobe_cmd = " ".join([
- 'ffprobe',
- '-v',
- 'panic',
- '-show_error',
- '-show_streams',
- '-of',
- 'json',
- '"'+source+'"'
- ])
- print(ffprobe_cmd)
- p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
- (output, err) = p.communicate()
- p_status = p.wait()
- info = json.loads(output)
- print(info)
- video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
- if video_info['height'] != 0 and video_info['width'] != 0:
- return (video_info['height'], video_info['width'], 3)
-
- # fallback to using opencv if ffprobe didnt succeed
- video = cv2.VideoCapture(source)
- ret, frame = video.read()
- frame_shape = frame.shape
- video.release()
- return frame_shape
- def get_ffmpeg_input(ffmpeg_input):
- frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
- return ffmpeg_input.format(**frigate_vars)
- def filtered(obj, objects_to_track, object_filters, mask=None):
- object_name = obj[0]
- if not object_name in objects_to_track:
- return True
-
- if object_name in object_filters:
- obj_settings = object_filters[object_name]
- # if the min area is larger than the
- # detected object, don't add it to detected objects
- if obj_settings.get('min_area',-1) > obj[3]:
- return True
-
- # if the detected object is larger than the
- # max area, don't add it to detected objects
- if obj_settings.get('max_area', 24000000) < obj[3]:
- return True
- # if the score is lower than the min_score, skip
- if obj_settings.get('min_score', 0) > obj[1]:
- return True
-
- # compute the coordinates of the object and make sure
- # the location isnt outside the bounds of the image (can happen from rounding)
- y_location = min(int(obj[2][3]), len(mask)-1)
- x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
- # if the object is in a masked location, don't add it to detected objects
- if (not mask is None) and (mask[y_location][x_location] == 0):
- return True
-
- return False
- def create_tensor_input(frame, region):
- cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
- # Resize to 300x300 if needed
- if cropped_frame.shape != (300, 300, 3):
- cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
-
- # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
- return np.expand_dims(cropped_frame, axis=0)
- def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
- if not ffmpeg_process is None:
- print("Terminating the existing ffmpeg process...")
- ffmpeg_process.terminate()
- try:
- print("Waiting for ffmpeg to exit gracefully...")
- ffmpeg_process.communicate(timeout=30)
- except sp.TimeoutExpired:
- print("FFmpeg didnt exit. Force killing...")
- ffmpeg_process.kill()
- ffmpeg_process.communicate()
- ffmpeg_process = None
- print("Creating ffmpeg process...")
- print(" ".join(ffmpeg_cmd))
- process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
- return process
- def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
- frame_queue, take_frame: int, fps:EventsPerSecond, skipped_fps: EventsPerSecond,
- stop_event: mp.Event, detection_frame: mp.Value, current_frame: mp.Value):
- frame_num = 0
- last_frame = 0
- frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
- skipped_fps.start()
- while True:
- if stop_event.is_set():
- print(f"{camera_name}: stop event set. exiting capture thread...")
- break
- frame_bytes = ffmpeg_process.stdout.read(frame_size)
- current_frame.value = datetime.datetime.now().timestamp()
- if len(frame_bytes) < frame_size:
- print(f"{camera_name}: ffmpeg sent a broken frame. something is wrong.")
- if ffmpeg_process.poll() != None:
- print(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
- break
- else:
- continue
- fps.update()
- frame_num += 1
- if (frame_num % take_frame) != 0:
- skipped_fps.update()
- continue
- # if the detection process is more than 1 second behind, skip this frame
- if detection_frame.value > 0.0 and (last_frame - detection_frame.value) > 1:
- skipped_fps.update()
- continue
- # put the frame in the frame manager
- frame_manager.put(f"{camera_name}{current_frame.value}",
- np
- .frombuffer(frame_bytes, np.uint8)
- .reshape(frame_shape)
- )
- # add to the queue
- frame_queue.put(current_frame.value)
- last_frame = current_frame.value
- class CameraCapture(threading.Thread):
- def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps, detection_frame, stop_event):
- threading.Thread.__init__(self)
- self.name = name
- self.frame_shape = frame_shape
- self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
- self.frame_queue = frame_queue
- self.take_frame = take_frame
- self.fps = fps
- self.skipped_fps = EventsPerSecond()
- self.plasma_client = PlasmaFrameManager(stop_event)
- self.ffmpeg_process = ffmpeg_process
- self.current_frame = mp.Value('d', 0.0)
- self.last_frame = 0
- self.detection_frame = detection_frame
- self.stop_event = stop_event
- def run(self):
- self.skipped_fps.start()
- capture_frames(self.ffmpeg_process, self.name, self.frame_shape, self.plasma_client, self.frame_queue, self.take_frame,
- self.fps, self.skipped_fps, self.stop_event, self.detection_frame, self.current_frame)
- def track_camera(name, config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, detection_fps, read_start, detection_frame, stop_event):
- print(f"Starting process for {name}: {os.getpid()}")
- listen()
- detection_frame.value = 0.0
- # Merge the tracked object config with the global config
- camera_objects_config = config.get('objects', {})
- objects_to_track = camera_objects_config.get('track', [])
- object_filters = camera_objects_config.get('filters', {})
- # load in the mask for object detection
- if 'mask' in config:
- if config['mask'].startswith('base64,'):
- img = base64.b64decode(config['mask'][7:])
- npimg = np.fromstring(img, dtype=np.uint8)
- mask = cv2.imdecode(npimg, cv2.IMREAD_GRAYSCALE)
- elif config['mask'].startswith('poly,'):
- points = config['mask'].split(',')[1:]
- contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
- mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
- mask[:] = 255
- cv2.fillPoly(mask, pts=[contour], color=(0))
- else:
- mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
- else:
- mask = None
- if mask is None or mask.size == 0:
- mask = np.zeros((frame_shape[0], frame_shape[1]), np.uint8)
- mask[:] = 255
- motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
- object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
- object_tracker = ObjectTracker(10)
- plasma_client = PlasmaFrameManager()
- process_frames(name, frame_queue, frame_shape, plasma_client, motion_detector, object_detector,
- object_tracker, detected_objects_queue, fps, detection_fps, detection_frame, objects_to_track, object_filters, mask, stop_event)
- print(f"{name}: exiting subprocess")
- def reduce_boxes(boxes):
- if len(boxes) == 0:
- return []
- reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
- return [tuple(b) for b in reduced_boxes]
- def detect(object_detector, frame, region, objects_to_track, object_filters, mask):
- tensor_input = create_tensor_input(frame, region)
- detections = []
- region_detections = object_detector.detect(tensor_input)
- for d in region_detections:
- box = d[2]
- size = region[2]-region[0]
- x_min = int((box[1] * size) + region[0])
- y_min = int((box[0] * size) + region[1])
- x_max = int((box[3] * size) + region[0])
- y_max = int((box[2] * size) + region[1])
- det = (d[0],
- d[1],
- (x_min, y_min, x_max, y_max),
- (x_max-x_min)*(y_max-y_min),
- region)
- # apply object filters
- if filtered(det, objects_to_track, object_filters, mask):
- continue
- detections.append(det)
- return detections
- def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape,
- frame_manager: FrameManager, motion_detector: MotionDetector,
- object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
- detected_objects_queue: mp.Queue, fps: mp.Value, detection_fps: mp.Value, current_frame_time: mp.Value,
- objects_to_track: List[str], object_filters: Dict, mask, stop_event: mp.Event,
- exit_on_empty: bool = False):
-
- fps_tracker = EventsPerSecond()
- fps_tracker.start()
- while True:
- if stop_event.is_set() or (exit_on_empty and frame_queue.empty()):
- print(f"Exiting track_objects...")
- break
- try:
- frame_time = frame_queue.get(True, 10)
- except queue.Empty:
- continue
-
- current_frame_time.value = frame_time
- frame = frame_manager.get(f"{camera_name}{frame_time}")
- if frame is None:
- print(f"{camera_name}: frame {frame_time} is not in memory store.")
- continue
-
- fps_tracker.update()
- fps.value = fps_tracker.eps()
- # look for motion
- motion_boxes = motion_detector.detect(frame)
- tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
- # combine motion boxes with known locations of existing objects
- combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
- # compute regions
- regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
- for a in combined_boxes]
- # combine overlapping regions
- combined_regions = reduce_boxes(regions)
- # re-compute regions
- regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
- for a in combined_regions]
-
- # resize regions and detect
- detections = []
- for region in regions:
- detections.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
-
- #########
- # merge objects, check for clipped objects and look again up to 4 times
- #########
- refining = True
- refine_count = 0
- while refining and refine_count < 4:
- refining = False
- # group by name
- detected_object_groups = defaultdict(lambda: [])
- for detection in detections:
- detected_object_groups[detection[0]].append(detection)
- selected_objects = []
- for group in detected_object_groups.values():
- # apply non-maxima suppression to suppress weak, overlapping bounding boxes
- boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
- for o in group]
- confidences = [o[1] for o in group]
- idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
- for index in idxs:
- obj = group[index[0]]
- if clipped(obj, frame_shape):
- box = obj[2]
- # calculate a new region that will hopefully get the entire object
- region = calculate_region(frame_shape,
- box[0], box[1],
- box[2], box[3])
-
- selected_objects.extend(detect(object_detector, frame, region, objects_to_track, object_filters, mask))
- refining = True
- else:
- selected_objects.append(obj)
- # set the detections list to only include top, complete objects
- # and new detections
- detections = selected_objects
- if refining:
- refine_count += 1
- # now that we have refined our detections, we need to track objects
- object_tracker.match_and_update(frame_time, detections)
- # add to the queue
- detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects))
- detection_fps.value = object_detector.fps.eps()
|