|
@@ -2,11 +2,8 @@ import datetime
|
|
import cv2
|
|
import cv2
|
|
import numpy as np
|
|
import numpy as np
|
|
from edgetpu.detection.engine import DetectionEngine
|
|
from edgetpu.detection.engine import DetectionEngine
|
|
-from PIL import Image
|
|
|
|
from . util import tonumpyarray
|
|
from . util import tonumpyarray
|
|
|
|
|
|
-# TODO: make dynamic?
|
|
|
|
-NUM_CLASSES = 90
|
|
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
# List of the strings that is used to add correct label for each box.
|
|
# List of the strings that is used to add correct label for each box.
|
|
@@ -22,42 +19,50 @@ def ReadLabelFile(file_path):
|
|
ret[int(pair[0])] = pair[1].strip()
|
|
ret[int(pair[0])] = pair[1].strip()
|
|
return ret
|
|
return ret
|
|
|
|
|
|
-# do the actual object detection
|
|
|
|
-def tf_detect_objects(cropped_frame, engine, labels, region_size, region_x_offset, region_y_offset, debug):
|
|
|
|
- # Resize to 300x300 if needed
|
|
|
|
- if cropped_frame.shape != (300, 300, 3):
|
|
|
|
- cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
|
|
|
- # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
|
|
- image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
|
|
|
|
+def detect_objects(prepped_frame_array, prepped_frame_time, prepped_frame_lock,
|
|
|
|
+ prepped_frame_ready, prepped_frame_box, object_queue, debug):
|
|
|
|
+ # Load the edgetpu engine and labels
|
|
|
|
+ engine = DetectionEngine(PATH_TO_CKPT)
|
|
|
|
+ labels = ReadLabelFile(PATH_TO_LABELS)
|
|
|
|
|
|
- # Actual detection.
|
|
|
|
- ans = engine.DetectWithInputTensor(image_np_expanded.flatten(), threshold=0.5, top_k=3)
|
|
|
|
|
|
+ prepped_frame_time = 0.0
|
|
|
|
+ while True:
|
|
|
|
+ with prepped_frame_ready:
|
|
|
|
+ prepped_frame_ready.wait()
|
|
|
|
+
|
|
|
|
+ # make a copy of the cropped frame
|
|
|
|
+ with prepped_frame_lock:
|
|
|
|
+ prepped_frame_copy = prepped_frame_array.copy()
|
|
|
|
+ prepped_frame_time = prepped_frame_time.value
|
|
|
|
+ region_box = prepped_frame_box.value
|
|
|
|
|
|
- # build an array of detected objects
|
|
|
|
- objects = []
|
|
|
|
- if ans:
|
|
|
|
- for obj in ans:
|
|
|
|
- box = obj.bounding_box.flatten().tolist()
|
|
|
|
- objects.append({
|
|
|
|
- 'name': str(labels[obj.label_id]),
|
|
|
|
- 'score': float(obj.score),
|
|
|
|
- 'xmin': int((box[0] * region_size) + region_x_offset),
|
|
|
|
- 'ymin': int((box[1] * region_size) + region_y_offset),
|
|
|
|
- 'xmax': int((box[2] * region_size) + region_x_offset),
|
|
|
|
- 'ymax': int((box[3] * region_size) + region_y_offset)
|
|
|
|
- })
|
|
|
|
|
|
+ # Actual detection.
|
|
|
|
+ ans = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
|
|
|
- return objects
|
|
|
|
|
|
+ # put detected objects in the queue
|
|
|
|
+ if ans:
|
|
|
|
+ # assumes square
|
|
|
|
+ region_size = region_box[3]-region_box[0]
|
|
|
|
+ for obj in ans:
|
|
|
|
+ box = obj.bounding_box.flatten().tolist()
|
|
|
|
+ object_queue.append({
|
|
|
|
+ 'frame_time': prepped_frame_time,
|
|
|
|
+ 'name': str(labels[obj.label_id]),
|
|
|
|
+ 'score': float(obj.score),
|
|
|
|
+ 'xmin': int((box[0] * region_size) + region_box[0]),
|
|
|
|
+ 'ymin': int((box[1] * region_size) + region_box[1]),
|
|
|
|
+ 'xmax': int((box[2] * region_size) + region_box[0]),
|
|
|
|
+ 'ymax': int((box[3] * region_size) + region_box[1])
|
|
|
|
+ })
|
|
|
|
|
|
-def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
|
|
|
|
|
|
+def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
|
|
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
- min_person_area, debug):
|
|
|
|
|
|
+ prepped_frame_array, prepped_frame_time, prepped_frame_ready, prepped_frame_lock,
|
|
|
|
+ prepped_frame_box):
|
|
# shape shared input array into frame for processing
|
|
# shape shared input array into frame for processing
|
|
- arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
+ shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
|
|
|
|
|
|
- # Load the edgetpu engine and labels
|
|
|
|
- engine = DetectionEngine(PATH_TO_CKPT)
|
|
|
|
- labels = ReadLabelFile(PATH_TO_LABELS)
|
|
|
|
|
|
+ shared_prepped_frame = tonumpyarray(prepped_frame_array).reshape((1,300,300,3))
|
|
|
|
|
|
frame_time = 0.0
|
|
frame_time = 0.0
|
|
while True:
|
|
while True:
|
|
@@ -69,20 +74,30 @@ def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, fram
|
|
with frame_ready:
|
|
with frame_ready:
|
|
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
|
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
|
|
+ print("waiting...")
|
|
frame_ready.wait()
|
|
frame_ready.wait()
|
|
|
|
|
|
# make a copy of the cropped frame
|
|
# make a copy of the cropped frame
|
|
with frame_lock:
|
|
with frame_lock:
|
|
- cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
|
|
|
+ cropped_frame = shared_whole_frame[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
frame_time = shared_frame_time.value
|
|
frame_time = shared_frame_time.value
|
|
|
|
+
|
|
|
|
+ print("grabbed frame " + str(frame_time))
|
|
|
|
|
|
# convert to RGB
|
|
# convert to RGB
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
- # do the object detection
|
|
|
|
- objects = tf_detect_objects(cropped_frame_rgb, engine, labels, region_size, region_x_offset, region_y_offset, debug)
|
|
|
|
- for obj in objects:
|
|
|
|
- # ignore persons below the size threshold
|
|
|
|
- if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
|
|
|
|
- continue
|
|
|
|
- obj['frame_time'] = frame_time
|
|
|
|
- object_queue.put(obj)
|
|
|
|
|
|
+ # Resize to 300x300 if needed
|
|
|
|
+ if cropped_frame_rgb.shape != (300, 300, 3):
|
|
|
|
+ cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
|
|
|
+ # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
|
|
|
+ frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
|
|
|
+
|
|
|
|
+ # copy the prepped frame to the shared output array
|
|
|
|
+ with prepped_frame_lock:
|
|
|
|
+ shared_prepped_frame[:] = frame_expanded
|
|
|
|
+ prepped_frame_time = frame_time
|
|
|
|
+ prepped_frame_box[:] = [region_x_offset, region_y_offset, region_x_offset+region_size, region_y_offset+region_size]
|
|
|
|
+
|
|
|
|
+ # signal that a prepped frame is ready
|
|
|
|
+ with prepped_frame_ready:
|
|
|
|
+ prepped_frame_ready.notify_all()
|