|
@@ -1,6 +1,7 @@
|
|
|
import json
|
|
|
import hashlib
|
|
|
import datetime
|
|
|
+import time
|
|
|
import copy
|
|
|
import cv2
|
|
|
import threading
|
|
@@ -44,109 +45,131 @@ class TrackedObjectProcessor(threading.Thread):
|
|
|
|
|
|
def get_current_frame(self, camera):
|
|
|
return self.camera_data[camera]['current_frame']
|
|
|
-
|
|
|
- def run(self):
|
|
|
+
|
|
|
+ def connect_plasma_client(self):
|
|
|
while True:
|
|
|
try:
|
|
|
self.plasma_client = plasma.connect("/tmp/plasma")
|
|
|
- while True:
|
|
|
- camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
|
|
+ return
|
|
|
+ except:
|
|
|
+ print(f"TrackedObjectProcessor: unable to connect plasma client")
|
|
|
+ time.sleep(10)
|
|
|
+
|
|
|
+ def get_from_plasma(self, object_id):
|
|
|
+ while True:
|
|
|
+ try:
|
|
|
+ return self.plasma_client.get(object_id, timeout_ms=0)
|
|
|
+ except:
|
|
|
+ self.connect_plasma_client()
|
|
|
+ time.sleep(1)
|
|
|
+
|
|
|
+ def delete_from_plasma(self, object_ids):
|
|
|
+ while True:
|
|
|
+ try:
|
|
|
+ self.plasma_client.delete(object_ids)
|
|
|
+ return
|
|
|
+ except:
|
|
|
+ self.connect_plasma_client()
|
|
|
+ time.sleep(1)
|
|
|
|
|
|
- config = self.config[camera]
|
|
|
- best_objects = self.camera_data[camera]['best_objects']
|
|
|
- current_object_status = self.camera_data[camera]['object_status']
|
|
|
- self.camera_data[camera]['tracked_objects'] = tracked_objects
|
|
|
+ def run(self):
|
|
|
+ self.connect_plasma_client()
|
|
|
+ while True:
|
|
|
+ camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
|
|
|
|
|
- ###
|
|
|
- # Draw tracked objects on the frame
|
|
|
- ###
|
|
|
- object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
|
|
- object_id_bytes = object_id_hash.digest()
|
|
|
- object_id = plasma.ObjectID(object_id_bytes)
|
|
|
- current_frame = self.plasma_client.get(object_id, timeout_ms=0)
|
|
|
+ config = self.config[camera]
|
|
|
+ best_objects = self.camera_data[camera]['best_objects']
|
|
|
+ current_object_status = self.camera_data[camera]['object_status']
|
|
|
+ self.camera_data[camera]['tracked_objects'] = tracked_objects
|
|
|
|
|
|
- if not current_frame is plasma.ObjectNotAvailable:
|
|
|
- # draw the bounding boxes on the frame
|
|
|
- for obj in tracked_objects.values():
|
|
|
- thickness = 2
|
|
|
- color = COLOR_MAP[obj['label']]
|
|
|
-
|
|
|
- if obj['frame_time'] != frame_time:
|
|
|
- thickness = 1
|
|
|
- color = (255,0,0)
|
|
|
+ ###
|
|
|
+ # Draw tracked objects on the frame
|
|
|
+ ###
|
|
|
+ object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
|
|
+ object_id_bytes = object_id_hash.digest()
|
|
|
+ object_id = plasma.ObjectID(object_id_bytes)
|
|
|
+ current_frame = self.get_from_plasma(object_id)
|
|
|
|
|
|
- # draw the bounding boxes on the frame
|
|
|
- box = obj['box']
|
|
|
- draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
|
|
- # draw the regions on the frame
|
|
|
- region = obj['region']
|
|
|
- cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
|
|
-
|
|
|
- if config['snapshots']['show_timestamp']:
|
|
|
- time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
|
|
- cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
|
+ if not current_frame is plasma.ObjectNotAvailable:
|
|
|
+ # draw the bounding boxes on the frame
|
|
|
+ for obj in tracked_objects.values():
|
|
|
+ thickness = 2
|
|
|
+ color = COLOR_MAP[obj['label']]
|
|
|
+
|
|
|
+ if obj['frame_time'] != frame_time:
|
|
|
+ thickness = 1
|
|
|
+ color = (255,0,0)
|
|
|
|
|
|
- ###
|
|
|
- # Set the current frame as ready
|
|
|
- ###
|
|
|
- self.camera_data[camera]['current_frame'] = current_frame
|
|
|
+ # draw the bounding boxes on the frame
|
|
|
+ box = obj['box']
|
|
|
+ draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
|
|
+ # draw the regions on the frame
|
|
|
+ region = obj['region']
|
|
|
+ cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
|
|
+
|
|
|
+ if config['snapshots']['show_timestamp']:
|
|
|
+ time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
|
|
+ cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
|
|
|
|
- # store the object id, so you can delete it at the next loop
|
|
|
- previous_object_id = self.camera_data[camera]['object_id']
|
|
|
- if not previous_object_id is None:
|
|
|
- self.plasma_client.delete([previous_object_id])
|
|
|
- self.camera_data[camera]['object_id'] = object_id
|
|
|
-
|
|
|
- ###
|
|
|
- # Maintain the highest scoring recent object and frame for each label
|
|
|
- ###
|
|
|
- for obj in tracked_objects.values():
|
|
|
- # if the object wasn't seen on the current frame, skip it
|
|
|
- if obj['frame_time'] != frame_time:
|
|
|
- continue
|
|
|
- if obj['label'] in best_objects:
|
|
|
- now = datetime.datetime.now().timestamp()
|
|
|
- # if the object is a higher score than the current best score
|
|
|
- # or the current object is more than 1 minute old, use the new object
|
|
|
- if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
|
|
- obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
|
|
- best_objects[obj['label']] = obj
|
|
|
- else:
|
|
|
- obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
|
|
- best_objects[obj['label']] = obj
|
|
|
+ ###
|
|
|
+ # Set the current frame as ready
|
|
|
+ ###
|
|
|
+ self.camera_data[camera]['current_frame'] = current_frame
|
|
|
|
|
|
- ###
|
|
|
- # Report over MQTT
|
|
|
- ###
|
|
|
- # count objects with more than 2 entries in history by type
|
|
|
- obj_counter = Counter()
|
|
|
- for obj in tracked_objects.values():
|
|
|
- if len(obj['history']) > 1:
|
|
|
- obj_counter[obj['label']] += 1
|
|
|
-
|
|
|
- # report on detected objects
|
|
|
- for obj_name, count in obj_counter.items():
|
|
|
- new_status = 'ON' if count > 0 else 'OFF'
|
|
|
- if new_status != current_object_status[obj_name]:
|
|
|
- current_object_status[obj_name] = new_status
|
|
|
- self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
|
|
|
- # send the best snapshot over mqtt
|
|
|
- best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
|
|
- ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
|
- if ret:
|
|
|
- jpg_bytes = jpg.tobytes()
|
|
|
- self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
|
|
+ # store the object id, so you can delete it at the next loop
|
|
|
+ previous_object_id = self.camera_data[camera]['object_id']
|
|
|
+ if not previous_object_id is None:
|
|
|
+ self.delete_from_plasma([previous_object_id])
|
|
|
+ self.camera_data[camera]['object_id'] = object_id
|
|
|
+
|
|
|
+ ###
|
|
|
+ # Maintain the highest scoring recent object and frame for each label
|
|
|
+ ###
|
|
|
+ for obj in tracked_objects.values():
|
|
|
+ # if the object wasn't seen on the current frame, skip it
|
|
|
+ if obj['frame_time'] != frame_time:
|
|
|
+ continue
|
|
|
+ if obj['label'] in best_objects:
|
|
|
+ now = datetime.datetime.now().timestamp()
|
|
|
+ # if the object is a higher score than the current best score
|
|
|
+ # or the current object is more than 1 minute old, use the new object
|
|
|
+ if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
|
|
+ obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
|
|
+ best_objects[obj['label']] = obj
|
|
|
+ else:
|
|
|
+ obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
|
|
+ best_objects[obj['label']] = obj
|
|
|
|
|
|
- # expire any objects that are ON and no longer detected
|
|
|
- expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
|
|
- for obj_name in expired_objects:
|
|
|
- current_object_status[obj_name] = 'OFF'
|
|
|
- self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
|
|
|
- # send updated snapshot over mqtt
|
|
|
- best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
|
|
- ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
|
- if ret:
|
|
|
- jpg_bytes = jpg.tobytes()
|
|
|
- self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
|
|
- except:
|
|
|
- pass
|
|
|
+ ###
|
|
|
+ # Report over MQTT
|
|
|
+ ###
|
|
|
+ # count objects with more than 2 entries in history by type
|
|
|
+ obj_counter = Counter()
|
|
|
+ for obj in tracked_objects.values():
|
|
|
+ if len(obj['history']) > 1:
|
|
|
+ obj_counter[obj['label']] += 1
|
|
|
+
|
|
|
+ # report on detected objects
|
|
|
+ for obj_name, count in obj_counter.items():
|
|
|
+ new_status = 'ON' if count > 0 else 'OFF'
|
|
|
+ if new_status != current_object_status[obj_name]:
|
|
|
+ current_object_status[obj_name] = new_status
|
|
|
+ self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
|
|
|
+ # send the best snapshot over mqtt
|
|
|
+ best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
|
|
+ ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
|
+ if ret:
|
|
|
+ jpg_bytes = jpg.tobytes()
|
|
|
+ self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
|
|
+
|
|
|
+ # expire any objects that are ON and no longer detected
|
|
|
+ expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
|
|
+ for obj_name in expired_objects:
|
|
|
+ current_object_status[obj_name] = 'OFF'
|
|
|
+ self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
|
|
|
+ # send updated snapshot over mqtt
|
|
|
+ best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
|
|
+ ret, jpg = cv2.imencode('.jpg', best_frame)
|
|
|
+ if ret:
|
|
|
+ jpg_bytes = jpg.tobytes()
|
|
|
+ self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|