|
@@ -1,7 +1,8 @@
|
|
|
import time
|
|
|
import datetime
|
|
|
import threading
|
|
|
-
|
|
|
+import cv2
|
|
|
+from object_detection.utils import visualization_utils as vis_util
|
|
|
class ObjectParser(threading.Thread):
|
|
|
def __init__(self, object_queue, objects_parsed, detected_objects):
|
|
|
threading.Thread.__init__(self)
|
|
@@ -45,4 +46,78 @@ class ObjectCleaner(threading.Thread):
|
|
|
self._objects_parsed.notify_all()
|
|
|
|
|
|
# wait a bit before checking for more expired frames
|
|
|
- time.sleep(0.2)
|
|
|
+ time.sleep(0.2)
|
|
|
+
|
|
|
+# Maintains the frame and person with the highest score from the most recent
|
|
|
+# motion event
|
|
|
+class BestPersonFrame(threading.Thread):
|
|
|
+ def __init__(self, objects_parsed, recent_frames, detected_objects, motion_changed, motion_regions):
|
|
|
+ threading.Thread.__init__(self)
|
|
|
+ self.objects_parsed = objects_parsed
|
|
|
+ self.recent_frames = recent_frames
|
|
|
+ self.detected_objects = detected_objects
|
|
|
+ self.motion_changed = motion_changed
|
|
|
+ self.motion_regions = motion_regions
|
|
|
+ self.best_person = None
|
|
|
+ self.best_frame = None
|
|
|
+
|
|
|
+ def run(self):
|
|
|
+ motion_start = 0.0
|
|
|
+ motion_end = 0.0
|
|
|
+
|
|
|
+ while True:
|
|
|
+
|
|
|
+ # while there is motion
|
|
|
+ while len([r for r in self.motion_regions if r.is_set()]) > 0:
|
|
|
+ # wait until objects have been parsed
|
|
|
+ with self.objects_parsed:
|
|
|
+ self.objects_parsed.wait()
|
|
|
+
|
|
|
+ # make a copy of detected objects
|
|
|
+ detected_objects = self.detected_objects.copy()
|
|
|
+ detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
|
|
|
+ # make a copy of the recent frames
|
|
|
+ recent_frames = self.recent_frames.copy()
|
|
|
+
|
|
|
+ # get the highest scoring person
|
|
|
+ new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
|
|
|
+
|
|
|
+ # if there isnt a person, continue
|
|
|
+ if new_best_person is None:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # if there is no current best_person
|
|
|
+ if self.best_person is None:
|
|
|
+ self.best_person = new_best_person
|
|
|
+ # if there is already a best_person
|
|
|
+ else:
|
|
|
+ now = datetime.datetime.now().timestamp()
|
|
|
+ # if the new best person is a higher score than the current best person
|
|
|
+ # or the current person is more than 1 minute old, use the new best person
|
|
|
+ if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
|
|
|
+ self.best_person = new_best_person
|
|
|
+
|
|
|
+ if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
|
|
+ best_frame = recent_frames[self.best_person['frame_time']]
|
|
|
+ best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
|
|
|
+ # draw the bounding box on the frame
|
|
|
+ vis_util.draw_bounding_box_on_image_array(best_frame,
|
|
|
+ self.best_person['ymin'],
|
|
|
+ self.best_person['xmin'],
|
|
|
+ self.best_person['ymax'],
|
|
|
+ self.best_person['xmax'],
|
|
|
+ color='red',
|
|
|
+ thickness=2,
|
|
|
+ display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
|
|
|
+ use_normalized_coordinates=False)
|
|
|
+
|
|
|
+ # convert back to BGR
|
|
|
+ self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
|
|
+
|
|
|
+ motion_end = datetime.datetime.now().timestamp()
|
|
|
+
|
|
|
+ # wait for the global motion flag to change
|
|
|
+ with self.motion_changed:
|
|
|
+ self.motion_changed.wait()
|
|
|
+
|
|
|
+ motion_start = datetime.datetime.now().timestamp()
|