| 
					
				 | 
			
			
				@@ -50,14 +50,14 @@ class DetectedObjectsProcessor(threading.Thread): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             objects = frame['detected_objects'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # print(f"Processing objects for: {frame['size']} {frame['x_offset']} {frame['y_offset']}") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for raw_obj in objects: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                name = str(LABELS[raw_obj.label_id]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # if len(objects) == 0: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            #     continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if not name in self.camera.objects_to_track: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            for raw_obj in objects: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 obj = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    'name': str(LABELS[raw_obj.label_id]), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    'name': name, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     'score': float(raw_obj.score), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     'box': { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                         'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']), 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -74,9 +74,6 @@ class DetectedObjectsProcessor(threading.Thread): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     'frame_time': frame['frame_time'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                     'region_id': frame['region_id'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                if not obj['name'] == 'bicycle': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-                    continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 # if the object is within 5 pixels of the region border, and the region is not on the edge 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 # consider the object to be clipped 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -245,15 +242,14 @@ class ObjectTracker(threading.Thread): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def run(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         prctl.set_name(self.__class__.__name__) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         while True: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            # TODO: track objects 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             frame_time = self.camera.refined_frame_queue.get() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.match_and_update(self.camera.detected_objects[frame_time]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             # f = open(f"/debug/{str(frame_time)}.jpg", 'wb') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             # f.write(self.camera.frame_with_objects(frame_time)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             # f.close() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def register(self, index, obj): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        id = f"{str(obj.frame_time)}-{index}" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        id = f"{str(obj['frame_time'])}-{index}" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         self.tracked_objects[id] = obj 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         self.disappeared[id] = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -262,10 +258,12 @@ class ObjectTracker(threading.Thread): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         del self.tracked_objects[id] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				      
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def update(self, id, new_obj): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        new_obj.detections = self.tracked_objects[id].detections 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        new_obj.detections.append({ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.tracked_objects[id]['centroid'] = new_obj['centroid'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.tracked_objects[id]['box'] = new_obj['box'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.tracked_objects[id]['region'] = new_obj['region'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.tracked_objects[id]['score'] = new_obj['score'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.tracked_objects[id]['name'] = new_obj['name'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # TODO: am i missing anything? history?   
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def match_and_update(self, new_objects): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # check to see if the list of input bounding box rectangles 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -290,16 +288,16 @@ class ObjectTracker(threading.Thread): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         for obj in new_objects: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-            obj.centroid = (centroid_x, centroid_y) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            obj['centroid'] = (centroid_x, centroid_y) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         if len(self.tracked_objects) == 0: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             for index, obj in enumerate(new_objects): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 self.register(index, obj) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             return 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				          
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        new_centroids = np.array([o.centroid for o in new_objects]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        new_centroids = np.array([o['centroid'] for o in new_objects]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         current_ids = list(self.tracked_objects.keys()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        current_centroids = np.array([o.centroid for o in self.tracked_objects]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        current_centroids = np.array([o['centroid'] for o in self.tracked_objects.values()]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # compute the distance between each pair of tracked 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # centroids and new centroids, respectively -- our 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -376,110 +374,6 @@ class ObjectTracker(threading.Thread): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             for col in unusedCols: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				                 self.register(col, new_objects[col]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # ------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # initialize an array of input centroids for the current frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # inputCentroids = np.zeros((len(rects), 2), dtype="int") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # loop over the bounding box rectangles 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # for (i, (startX, startY, endX, endY)) in enumerate(rects): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # use the bounding box coordinates to derive the centroid 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     cX = int((startX + endX) / 2.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     cY = int((startY + endY) / 2.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     inputCentroids[i] = (cX, cY) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # if we are currently not tracking any objects take the input 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # centroids and register each of them 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # if len(self.objects) == 0: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     for i in range(0, len(inputCentroids)): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         self.register(inputCentroids[i]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # otherwise, are are currently tracking objects so we need to 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # try to match the input centroids to existing object 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # centroids 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # grab the set of object IDs and corresponding centroids 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     objectIDs = list(self.objects.keys()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     objectCentroids = list(self.objects.values()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # compute the distance between each pair of object 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # centroids and input centroids, respectively -- our 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # goal will be to match an input centroid to an existing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # object centroid 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     D = dist.cdist(np.array(objectCentroids), inputCentroids) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # in order to perform this matching we must (1) find the 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # smallest value in each row and then (2) sort the row 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # indexes based on their minimum values so that the row 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # with the smallest value is at the *front* of the index 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # list 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     rows = D.min(axis=1).argsort() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # next, we perform a similar process on the columns by 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # finding the smallest value in each column and then 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # sorting using the previously computed row index list 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     cols = D.argmin(axis=1)[rows] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # in order to determine if we need to update, register, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # or deregister an object we need to keep track of which 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # of the rows and column indexes we have already examined 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     usedRows = set() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     usedCols = set() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # loop over the combination of the (row, column) index 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # tuples 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     for (row, col) in zip(rows, cols): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # if we have already examined either the row or 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # column value before, ignore it 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # val 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         if row in usedRows or col in usedCols: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             continue 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # otherwise, grab the object ID for the current row, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # set its new centroid, and reset the disappeared 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # counter 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         objectID = objectIDs[row] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         self.objects[objectID] = inputCentroids[col] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         self.disappeared[objectID] = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # indicate that we have examined each of the row and 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # column indexes, respectively 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         usedRows.add(row) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         usedCols.add(col) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # compute both the row and column index we have NOT yet 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # examined 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     unusedRows = set(range(0, D.shape[0])).difference(usedRows) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     unusedCols = set(range(0, D.shape[1])).difference(usedCols) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # in the event that the number of object centroids is 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # equal or greater than the number of input centroids 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # we need to check and see if some of these objects have 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # potentially disappeared 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     if D.shape[0] >= D.shape[1]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         # loop over the unused row indexes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         for row in unusedRows: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             # grab the object ID for the corresponding row 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             # index and increment the disappeared counter 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             objectID = objectIDs[row] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             self.disappeared[objectID] += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             # check to see if the number of consecutive 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             # frames the object has been marked "disappeared" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             # for warrants deregistering the object 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             if self.disappeared[objectID] > self.maxDisappeared: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #                 self.deregister(objectID) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # otherwise, if the number of input centroids is greater 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # than the number of existing object centroids we need to 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     # register each new input centroid as a trackable object 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #     else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #         for col in unusedCols: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #             self.register(inputCentroids[col]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # # return the set of trackable objects 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        # return self.objects 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 # Maintains the frame and object with the highest score 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 class BestFrames(threading.Thread): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def __init__(self, objects_parsed, recent_frames, detected_objects): 
			 |