Browse Source

track and report all detected object types

Blake Blackshear 5 years ago
parent
commit
bee99ca6ff
7 changed files with 160 additions and 131 deletions
  1. 7 5
      README.md
  2. 28 10
      config/config.example.yml
  3. 9 7
      detect_objects.py
  4. 27 22
      frigate/mqtt.py
  5. 6 9
      frigate/object_detection.py
  6. 27 35
      frigate/objects.py
  7. 56 43
      frigate/video.py

+ 7 - 5
README.md

@@ -55,20 +55,22 @@ Example docker-compose:
 
 A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
 
-Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg`
+Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
 
 ## Integration with HomeAssistant
 ```
 camera:
   - name: Camera Last Person
     platform: mqtt
-    topic: frigate/<camera_name>/snapshot
+    topic: frigate/<camera_name>/person/snapshot
+  - name: Camera Last Car
+    platform: mqtt
+    topic: frigate/<camera_name>/car/snapshot
 
 binary_sensor:
   - name: Camera Person
     platform: mqtt
-    state_topic: "frigate/<camera_name>/objects"
-    value_template: '{{ value_json.person }}'
+    state_topic: "frigate/<camera_name>/person"
     device_class: motion
     availability_topic: "frigate/available"
 
@@ -89,7 +91,7 @@ automation:
           message: "A person was detected."
           data:
             photo:
-              - url: http://<ip>:5000/<camera_name>/best_person.jpg
+              - url: http://<ip>:5000/<camera_name>/person/best.jpg
                 caption: A person was detected.
 ```
 

+ 28 - 10
config/config.example.yml

@@ -45,7 +45,19 @@ mqtt:
 #     - rawvideo
 #     - -pix_fmt
 #     - rgb24
-  
+
+####################
+# Global object configuration. Applies to all cameras and regions
+# unless overridden at the camera/region levels.
+# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
+# All labels from the model are reported over MQTT. These values are used to filter out false positives.
+####################
+objects:
+  person:
+    min_area: 5000
+    max_area: 100000
+    threshold: 0.5
+
 cameras:
   back:
     ffmpeg:
@@ -78,6 +90,12 @@ cameras:
     # 3 every 3rd frame, etc.
     ################
     take_frame: 1
+
+    objects:
+      person:
+        min_area: 5000
+        max_area: 100000
+        threshold: 0.5
     
     ################
     # size: size of the region in pixels
@@ -93,18 +111,18 @@ cameras:
       - size: 350
         x_offset: 0
         y_offset: 300
-        min_person_area: 5000
-        max_person_area: 100000
-        threshold: 0.5
+        objects:
+          car:
+            threshold: 0.2
       - size: 400
         x_offset: 350
         y_offset: 250
-        min_person_area: 2000
-        max_person_area: 100000
-        threshold: 0.5
+        objects:
+          person:
+            min_area: 2000
       - size: 400
         x_offset: 750
         y_offset: 250
-        min_person_area: 2000
-        max_person_area: 100000
-        threshold: 0.5
+        objects:
+          person:
+            min_area: 2000

+ 9 - 7
detect_objects.py

@@ -42,6 +42,8 @@ FFMPEG_DEFAULT_CONFIG = {
          '-pix_fmt', 'rgb24'])
 }
 
+GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
+
 WEB_PORT = CONFIG.get('web_port', 5000)
 DEBUG = (CONFIG.get('debug', '0') == '1')
 
@@ -74,7 +76,7 @@ def main():
 
     cameras = {}
     for name, config in CONFIG['cameras'].items():
-        cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
+        cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
 
     prepped_queue_processor = PreppedQueueProcessor(
         cameras,
@@ -94,13 +96,13 @@ def main():
         # return a healh
         return "Frigate is running. Alive and healthy!"
 
-    @app.route('/<camera_name>/best_person.jpg')
-    def best_person(camera_name):
+    @app.route('/<camera_name>/<label>/best.jpg')
+    def best(camera_name, label):
         if camera_name in cameras:
-            best_person_frame = cameras[camera_name].get_best_person()
-            if best_person_frame is None:
-                best_person_frame = np.zeros((720,1280,3), np.uint8)
-            ret, jpg = cv2.imencode('.jpg', best_person_frame)
+            best_frame = cameras[camera_name].get_best(label)
+            if best_frame is None:
+                best_frame = np.zeros((720,1280,3), np.uint8)
+            ret, jpg = cv2.imencode('.jpg', best_frame)
             response = make_response(jpg.tobytes())
             response.headers['Content-Type'] = 'image/jpg'
             return response

+ 27 - 22
frigate/mqtt.py

@@ -1,41 +1,46 @@
 import json
 import cv2
 import threading
+from collections import Counter, defaultdict
 
 class MqttObjectPublisher(threading.Thread):
-    def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_person_frame):
+    def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
         threading.Thread.__init__(self)
         self.client = client
         self.topic_prefix = topic_prefix
         self.objects_parsed = objects_parsed
         self._detected_objects = detected_objects
-        self.best_person_frame = best_person_frame
+        self.best_frames = best_frames
 
     def run(self):
-        last_sent_payload = ""
+        current_object_status = defaultdict(lambda: 'OFF')
         while True:
-
-            # initialize the payload
-            payload = {}
-
             # wait until objects have been parsed
             with self.objects_parsed:
                 self.objects_parsed.wait()
 
-            # add all the person scores in detected objects
+            # make a copy of detected objects
             detected_objects = self._detected_objects.copy()
-            person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])
-            # if the person score is more than 100, set person to ON
-            payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF'
 
-            # send message for objects if different
-            new_payload = json.dumps(payload, sort_keys=True)
-            if new_payload != last_sent_payload:
-                last_sent_payload = new_payload
-                self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
-                # send the snapshot over mqtt as well
-                if not self.best_person_frame.best_frame is None:
-                    ret, jpg = cv2.imencode('.jpg', self.best_person_frame.best_frame)
-                    if ret:
-                        jpg_bytes = jpg.tobytes()
-                        self.client.publish(self.topic_prefix+'/snapshot', jpg_bytes, retain=True)
+            # total up all scores by object type
+            obj_counter = Counter()
+            for obj in detected_objects:
+                obj_counter[obj['name']] += obj['score']
+            
+            # report on detected objects
+            for obj_name, total_score in obj_counter.items():
+                new_status = 'ON' if int(total_score*100) > 100 else 'OFF'
+                if new_status != current_object_status[obj_name]:
+                    current_object_status[obj_name] = new_status
+                    self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
+                    # send the snapshot over mqtt as well
+                    if not self.best_frames.best_frames[obj_name] is None:
+                        ret, jpg = cv2.imencode('.jpg', self.best_frames.best_frames[obj_name])
+                        if ret:
+                            jpg_bytes = jpg.tobytes()
+                            self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
+
+            # expire any objects that are ON and no longer detected
+            expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
+            for obj_name in expired_objects:
+                self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)

+ 6 - 9
frigate/object_detection.py

@@ -38,21 +38,18 @@ class PreppedQueueProcessor(threading.Thread):
             frame = self.prepped_frame_queue.get()
 
             # Actual detection.
-            objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=frame['region_threshold'], top_k=3)
+            objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
             # print(self.engine.get_inference_time())
 
             # parse and pass detected objects back to the camera
             parsed_objects = []
             for obj in objects:
-                box = obj.bounding_box.flatten().tolist()
                 parsed_objects.append({
+                            'region_id': frame['region_id'],
                             'frame_time': frame['frame_time'],
                             'name': str(self.labels[obj.label_id]),
                             'score': float(obj.score),
-                            'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
-                            'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
-                            'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
-                            'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
+                            'box': obj.bounding_box.flatten().tolist()
                         })
             self.cameras[frame['camera_name']].add_objects(parsed_objects)
 
@@ -61,7 +58,7 @@ class PreppedQueueProcessor(threading.Thread):
 class FramePrepper(threading.Thread):
     def __init__(self, camera_name, shared_frame, frame_time, frame_ready, 
         frame_lock,
-        region_size, region_x_offset, region_y_offset, region_threshold,
+        region_size, region_x_offset, region_y_offset, region_id,
         prepped_frame_queue):
 
         threading.Thread.__init__(self)
@@ -73,7 +70,7 @@ class FramePrepper(threading.Thread):
         self.region_size = region_size
         self.region_x_offset = region_x_offset
         self.region_y_offset = region_y_offset
-        self.region_threshold = region_threshold
+        self.region_id = region_id
         self.prepped_frame_queue = prepped_frame_queue
 
     def run(self):
@@ -104,7 +101,7 @@ class FramePrepper(threading.Thread):
                     'frame_time': frame_time,
                     'frame': frame_expanded.flatten().copy(),
                     'region_size': self.region_size,
-                    'region_threshold': self.region_threshold,
+                    'region_id': self.region_id,
                     'region_x_offset': self.region_x_offset,
                     'region_y_offset': self.region_y_offset
                 })

+ 27 - 35
frigate/objects.py

@@ -2,6 +2,7 @@ import time
 import datetime
 import threading
 import cv2
+import numpy as np
 from . util import draw_box_with_label
 
 class ObjectCleaner(threading.Thread):
@@ -35,16 +36,15 @@ class ObjectCleaner(threading.Thread):
                     self._objects_parsed.notify_all()
 
 
-# Maintains the frame and person with the highest score from the most recent
-# motion event
-class BestPersonFrame(threading.Thread):
+# Maintains the frame and object with the highest score
+class BestFrames(threading.Thread):
     def __init__(self, objects_parsed, recent_frames, detected_objects):
         threading.Thread.__init__(self)
         self.objects_parsed = objects_parsed
         self.recent_frames = recent_frames
         self.detected_objects = detected_objects
-        self.best_person = None
-        self.best_frame = None
+        self.best_objects = {}
+        self.best_frames = {}
 
     def run(self):
         while True:
@@ -55,38 +55,30 @@ class BestPersonFrame(threading.Thread):
 
             # make a copy of detected objects
             detected_objects = self.detected_objects.copy()
-            detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
 
-            # get the highest scoring person
-            new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
-
-            # if there isnt a person, continue
-            if new_best_person is None:
-                continue
-
-            # if there is no current best_person
-            if self.best_person is None:
-                self.best_person = new_best_person
-            # if there is already a best_person
-            else:
-                now = datetime.datetime.now().timestamp()
-                # if the new best person is a higher score than the current best person 
-                # or the current person is more than 1 minute old, use the new best person
-                if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
-                    self.best_person = new_best_person
+            for obj in detected_objects:
+                if obj['name'] in self.best_objects:
+                    now = datetime.datetime.now().timestamp()
+                    # if the object is a higher score than the current best score 
+                    # or the current object is more than 1 minute old, use the new object
+                    if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
+                        self.best_objects[obj['name']] = obj
+                else:
+                    self.best_objects[obj['name']] = obj
             
             # make a copy of the recent frames
             recent_frames = self.recent_frames.copy()
-            
-            if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
-                best_frame = recent_frames[self.best_person['frame_time']]
 
-                label = "{}: {}% {}".format(self.best_person['name'],int(self.best_person['score']*100),int(self.best_person['area']))
-                draw_box_with_label(best_frame, self.best_person['xmin'], self.best_person['ymin'], 
-                    self.best_person['xmax'], self.best_person['ymax'], label)
-                
-                # print a timestamp
-                time_to_show = datetime.datetime.fromtimestamp(self.best_person['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
-                cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
-                
-                self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
+            for name, obj in self.best_objects.items():
+                if obj['frame_time'] in recent_frames:
+                    best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
+
+                    label = "{}: {}% {}".format(name,int(obj['score']*100),int(obj['area']))
+                    draw_box_with_label(best_frame, obj['xmin'], obj['ymin'], 
+                        obj['xmax'], obj['ymax'], label)
+                    
+                    # print a timestamp
+                    time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
+                    cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
+                    
+                    self.best_frames[name] = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)

+ 56 - 43
frigate/video.py

@@ -7,9 +7,10 @@ import ctypes
 import multiprocessing as mp
 import subprocess as sp
 import numpy as np
+from collections import defaultdict
 from . util import tonumpyarray, draw_box_with_label
 from . object_detection import FramePrepper
-from . objects import ObjectCleaner, BestPersonFrame
+from . objects import ObjectCleaner, BestFrames
 from . mqtt import MqttObjectPublisher
 
 # Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
@@ -70,8 +71,8 @@ class CameraWatchdog(threading.Thread):
             # wait a bit before checking
             time.sleep(10)
 
-            if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 10:
-                print("last frame is more than 10 seconds old, restarting camera capture...")
+            if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
+                print("last frame is more than 5 minutes old, restarting camera capture...")
                 self.camera.start_or_restart_capture()
                 time.sleep(5)
 
@@ -111,7 +112,7 @@ class CameraCapture(threading.Thread):
                 self.camera.frame_ready.notify_all()
 
 class Camera:
-    def __init__(self, name, ffmpeg_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
+    def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
         self.name = name
         self.config = config
         self.detected_objects = []
@@ -124,6 +125,8 @@ class Camera:
         self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
         self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
 
+        camera_objects_config = config.get('objects', {})
+
         self.take_frame = self.config.get('take_frame', 1)
         self.regions = self.config['regions']
         self.frame_shape = get_frame_shape(self.ffmpeg_input)
@@ -147,20 +150,23 @@ class Camera:
 
         # for each region, create a separate thread to resize the region and prep for detection
         self.detection_prep_threads = []
-        for region in self.config['regions']:
-            # set a default threshold of 0.5 if not defined
-            if not 'threshold' in region:
-                region['threshold'] = 0.5
-            if not isinstance(region['threshold'], float):
-                print('Threshold is not a float. Setting to 0.5 default.')
-                region['threshold'] = 0.5
+        for index, region in enumerate(self.config['regions']):
+            region_objects = region.get('objects', {})
+            # build objects config for region
+            objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
+            merged_objects_config = defaultdict(lambda: {})
+            for obj in objects_with_config:
+                merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
+            
+            region['objects'] = merged_objects_config
+
             self.detection_prep_threads.append(FramePrepper(
                 self.name,
                 self.current_frame,
                 self.frame_time,
                 self.frame_ready,
                 self.frame_lock,
-                region['size'], region['x_offset'], region['y_offset'], region['threshold'],
+                region['size'], region['x_offset'], region['y_offset'], index,
                 prepped_frame_queue
             ))
         
@@ -169,22 +175,22 @@ class Camera:
             self.frame_ready, self.frame_lock, self.recent_frames)
         self.frame_tracker.start()
 
-        # start a thread to store the highest scoring recent person frame
-        self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
-        self.best_person_frame.start()
+        # start a thread to store the highest scoring recent frames for monitored object types
+        self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
+        self.best_frames.start()
 
         # start a thread to expire objects from the detected objects list
         self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
         self.object_cleaner.start()
 
-        # start a thread to publish object scores (currently only person)
-        mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_person_frame)
+        # start a thread to publish object scores
+        mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
         mqtt_publisher.start()
 
         # create a watchdog thread for capture process
         self.watchdog = CameraWatchdog(self)
 
-        # load in the mask for person detection
+        # load in the mask for object detection
         if 'mask' in self.config:
             self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
         else:
@@ -252,38 +258,45 @@ class Camera:
             return
 
         for obj in objects:
-            # Store object area to use in bounding box labels
+            # find the matching region
+            region = self.regions[obj['region_id']]
+
+            # Compute some extra properties
+            obj.update({
+                'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
+                'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
+                'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
+                'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
+            })
+            
+            # Compute the area
             obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
 
-            if obj['name'] == 'person':
-                # find the matching region
-                region = None
-                for r in self.regions:
-                    if (
-                            obj['xmin'] >= r['x_offset'] and
-                            obj['ymin'] >= r['y_offset'] and
-                            obj['xmax'] <= r['x_offset']+r['size'] and
-                            obj['ymax'] <= r['y_offset']+r['size']
-                        ): 
-                        region = r
-                        break
-                
-                # if the min person area is larger than the
-                # detected person, don't add it to detected objects
-                if region and 'min_person_area' in region and region['min_person_area'] > obj['area']:
+            object_name = obj['name']
+
+            if object_name in region['objects']:
+                obj_settings = region['objects'][object_name]
+
+                # if the min area is larger than the
+                # detected object, don't add it to detected objects
+                if obj_settings.get('min_area',-1) > obj['area']:
                     continue
                 
-                # if the detected person is larger than the
-                # max person area, don't add it to detected objects
-                if region and 'max_person_area' in region and region['max_person_area'] < obj['area']:
+                # if the detected object is larger than the
+                # max area, don't add it to detected objects
+                if obj_settings.get('max_area', region['size']**2) < obj['area']:
+                    continue
+
+                # if the score is lower than the threshold, skip
+                if obj_settings.get('threshold', 0) > obj['score']:
                     continue
             
-                # compute the coordinates of the person and make sure
+                # compute the coordinates of the object and make sure
                 # the location isnt outside the bounds of the image (can happen from rounding)
                 y_location = min(int(obj['ymax']), len(self.mask)-1)
                 x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
 
-                # if the person is in a masked location, continue
+                # if the object is in a masked location, don't add it to detected objects
                 if self.mask[y_location][x_location] == [0]:
                     continue
 
@@ -291,9 +304,9 @@ class Camera:
 
         with self.objects_parsed:
             self.objects_parsed.notify_all()
-
-    def get_best_person(self):
-        return self.best_person_frame.best_frame
+    
+    def get_best(self, label):
+        return self.best_frames.best_frames.get(label)
     
     def get_current_frame_with_objects(self):
         # make a copy of the current detected objects