|
@@ -7,9 +7,10 @@ import ctypes
|
|
|
import multiprocessing as mp
|
|
|
import subprocess as sp
|
|
|
import numpy as np
|
|
|
+from collections import defaultdict
|
|
|
from . util import tonumpyarray, draw_box_with_label
|
|
|
from . object_detection import FramePrepper
|
|
|
-from . objects import ObjectCleaner, BestPersonFrame
|
|
|
+from . objects import ObjectCleaner, BestFrames
|
|
|
from . mqtt import MqttObjectPublisher
|
|
|
|
|
|
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
|
@@ -70,8 +71,8 @@ class CameraWatchdog(threading.Thread):
|
|
|
# wait a bit before checking
|
|
|
time.sleep(10)
|
|
|
|
|
|
- if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 10:
|
|
|
- print("last frame is more than 10 seconds old, restarting camera capture...")
|
|
|
+ if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
|
|
|
+ print("last frame is more than 5 minutes old, restarting camera capture...")
|
|
|
self.camera.start_or_restart_capture()
|
|
|
time.sleep(5)
|
|
|
|
|
@@ -111,7 +112,7 @@ class CameraCapture(threading.Thread):
|
|
|
self.camera.frame_ready.notify_all()
|
|
|
|
|
|
class Camera:
|
|
|
- def __init__(self, name, ffmpeg_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
|
|
+ def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
|
|
self.name = name
|
|
|
self.config = config
|
|
|
self.detected_objects = []
|
|
@@ -124,6 +125,8 @@ class Camera:
|
|
|
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
|
|
|
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
|
|
|
|
|
|
+ camera_objects_config = config.get('objects', {})
|
|
|
+
|
|
|
self.take_frame = self.config.get('take_frame', 1)
|
|
|
self.regions = self.config['regions']
|
|
|
self.frame_shape = get_frame_shape(self.ffmpeg_input)
|
|
@@ -147,20 +150,23 @@ class Camera:
|
|
|
|
|
|
# for each region, create a separate thread to resize the region and prep for detection
|
|
|
self.detection_prep_threads = []
|
|
|
- for region in self.config['regions']:
|
|
|
- # set a default threshold of 0.5 if not defined
|
|
|
- if not 'threshold' in region:
|
|
|
- region['threshold'] = 0.5
|
|
|
- if not isinstance(region['threshold'], float):
|
|
|
- print('Threshold is not a float. Setting to 0.5 default.')
|
|
|
- region['threshold'] = 0.5
|
|
|
+ for index, region in enumerate(self.config['regions']):
|
|
|
+ region_objects = region.get('objects', {})
|
|
|
+ # build objects config for region
|
|
|
+ objects_with_config = set().union(global_objects_config.keys(), camera_objects_config.keys(), region_objects.keys())
|
|
|
+ merged_objects_config = defaultdict(lambda: {})
|
|
|
+ for obj in objects_with_config:
|
|
|
+ merged_objects_config[obj] = {**global_objects_config.get(obj,{}), **camera_objects_config.get(obj, {}), **region_objects.get(obj, {})}
|
|
|
+
|
|
|
+ region['objects'] = merged_objects_config
|
|
|
+
|
|
|
self.detection_prep_threads.append(FramePrepper(
|
|
|
self.name,
|
|
|
self.current_frame,
|
|
|
self.frame_time,
|
|
|
self.frame_ready,
|
|
|
self.frame_lock,
|
|
|
- region['size'], region['x_offset'], region['y_offset'], region['threshold'],
|
|
|
+ region['size'], region['x_offset'], region['y_offset'], index,
|
|
|
prepped_frame_queue
|
|
|
))
|
|
|
|
|
@@ -169,22 +175,22 @@ class Camera:
|
|
|
self.frame_ready, self.frame_lock, self.recent_frames)
|
|
|
self.frame_tracker.start()
|
|
|
|
|
|
- # start a thread to store the highest scoring recent person frame
|
|
|
- self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
|
|
|
- self.best_person_frame.start()
|
|
|
+ # start a thread to store the highest scoring recent frames for monitored object types
|
|
|
+ self.best_frames = BestFrames(self.objects_parsed, self.recent_frames, self.detected_objects)
|
|
|
+ self.best_frames.start()
|
|
|
|
|
|
# start a thread to expire objects from the detected objects list
|
|
|
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
|
|
self.object_cleaner.start()
|
|
|
|
|
|
- # start a thread to publish object scores (currently only person)
|
|
|
- mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_person_frame)
|
|
|
+ # start a thread to publish object scores
|
|
|
+ mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
|
|
|
mqtt_publisher.start()
|
|
|
|
|
|
# create a watchdog thread for capture process
|
|
|
self.watchdog = CameraWatchdog(self)
|
|
|
|
|
|
- # load in the mask for person detection
|
|
|
+ # load in the mask for object detection
|
|
|
if 'mask' in self.config:
|
|
|
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
|
|
else:
|
|
@@ -252,38 +258,45 @@ class Camera:
|
|
|
return
|
|
|
|
|
|
for obj in objects:
|
|
|
- # Store object area to use in bounding box labels
|
|
|
+ # find the matching region
|
|
|
+ region = self.regions[obj['region_id']]
|
|
|
+
|
|
|
+ # Compute some extra properties
|
|
|
+ obj.update({
|
|
|
+ 'xmin': int((obj['box'][0] * region['size']) + region['x_offset']),
|
|
|
+ 'ymin': int((obj['box'][1] * region['size']) + region['y_offset']),
|
|
|
+ 'xmax': int((obj['box'][2] * region['size']) + region['x_offset']),
|
|
|
+ 'ymax': int((obj['box'][3] * region['size']) + region['y_offset'])
|
|
|
+ })
|
|
|
+
|
|
|
+ # Compute the area
|
|
|
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
|
|
|
|
|
- if obj['name'] == 'person':
|
|
|
- # find the matching region
|
|
|
- region = None
|
|
|
- for r in self.regions:
|
|
|
- if (
|
|
|
- obj['xmin'] >= r['x_offset'] and
|
|
|
- obj['ymin'] >= r['y_offset'] and
|
|
|
- obj['xmax'] <= r['x_offset']+r['size'] and
|
|
|
- obj['ymax'] <= r['y_offset']+r['size']
|
|
|
- ):
|
|
|
- region = r
|
|
|
- break
|
|
|
-
|
|
|
- # if the min person area is larger than the
|
|
|
- # detected person, don't add it to detected objects
|
|
|
- if region and 'min_person_area' in region and region['min_person_area'] > obj['area']:
|
|
|
+ object_name = obj['name']
|
|
|
+
|
|
|
+ if object_name in region['objects']:
|
|
|
+ obj_settings = region['objects'][object_name]
|
|
|
+
|
|
|
+ # if the min area is larger than the
|
|
|
+ # detected object, don't add it to detected objects
|
|
|
+ if obj_settings.get('min_area',-1) > obj['area']:
|
|
|
continue
|
|
|
|
|
|
- # if the detected person is larger than the
|
|
|
- # max person area, don't add it to detected objects
|
|
|
- if region and 'max_person_area' in region and region['max_person_area'] < obj['area']:
|
|
|
+ # if the detected object is larger than the
|
|
|
+ # max area, don't add it to detected objects
|
|
|
+ if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # if the score is lower than the threshold, skip
|
|
|
+ if obj_settings.get('threshold', 0) > obj['score']:
|
|
|
continue
|
|
|
|
|
|
- # compute the coordinates of the person and make sure
|
|
|
+ # compute the coordinates of the object and make sure
|
|
|
# the location isnt outside the bounds of the image (can happen from rounding)
|
|
|
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
|
|
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
|
|
|
|
|
- # if the person is in a masked location, continue
|
|
|
+ # if the object is in a masked location, don't add it to detected objects
|
|
|
if self.mask[y_location][x_location] == [0]:
|
|
|
continue
|
|
|
|
|
@@ -291,9 +304,9 @@ class Camera:
|
|
|
|
|
|
with self.objects_parsed:
|
|
|
self.objects_parsed.notify_all()
|
|
|
-
|
|
|
- def get_best_person(self):
|
|
|
- return self.best_person_frame.best_frame
|
|
|
+
|
|
|
+ def get_best(self, label):
|
|
|
+ return self.best_frames.best_frames.get(label)
|
|
|
|
|
|
def get_current_frame_with_objects(self):
|
|
|
# make a copy of the current detected objects
|