|
@@ -1,5 +1,6 @@
|
|
import datetime
|
|
import datetime
|
|
import cv2
|
|
import cv2
|
|
|
|
+import threading
|
|
import numpy as np
|
|
import numpy as np
|
|
from edgetpu.detection.engine import DetectionEngine
|
|
from edgetpu.detection.engine import DetectionEngine
|
|
from . util import tonumpyarray
|
|
from . util import tonumpyarray
|
|
@@ -19,9 +20,11 @@ def ReadLabelFile(file_path):
|
|
ret[int(pair[0])] = pair[1].strip()
|
|
ret[int(pair[0])] = pair[1].strip()
|
|
return ret
|
|
return ret
|
|
|
|
|
|
-def detect_objects(prepped_frame_arrays, prepped_frame_times, prepped_frame_locks,
|
|
|
|
- prepped_frame_boxes, motion_changed, motion_regions, object_queue, debug):
|
|
|
|
- prepped_frame_nps = [tonumpyarray(prepped_frame_array) for prepped_frame_array in prepped_frame_arrays]
|
|
|
|
|
|
+def detect_objects(prepped_frame_array, prepped_frame_time,
|
|
|
|
+ prepped_frame_ready, prepped_frame_grabbed,
|
|
|
|
+ prepped_frame_box, object_queue, debug):
|
|
|
|
+ prepped_frame_np = tonumpyarray(prepped_frame_array)
|
|
|
|
+
|
|
# Load the edgetpu engine and labels
|
|
# Load the edgetpu engine and labels
|
|
engine = DetectionEngine(PATH_TO_CKPT)
|
|
engine = DetectionEngine(PATH_TO_CKPT)
|
|
labels = ReadLabelFile(PATH_TO_LABELS)
|
|
labels = ReadLabelFile(PATH_TO_LABELS)
|
|
@@ -29,85 +32,124 @@ def detect_objects(prepped_frame_arrays, prepped_frame_times, prepped_frame_lock
|
|
frame_time = 0.0
|
|
frame_time = 0.0
|
|
region_box = [0,0,0]
|
|
region_box = [0,0,0]
|
|
while True:
|
|
while True:
|
|
- # while there is motion
|
|
|
|
- while len([r for r in motion_regions if r.is_set()]) > 0:
|
|
|
|
-
|
|
|
|
- # loop over all the motion regions and look for objects
|
|
|
|
- for i, motion_region in enumerate(motion_regions):
|
|
|
|
- # skip the region if no motion
|
|
|
|
- if not motion_region.is_set():
|
|
|
|
- continue
|
|
|
|
-
|
|
|
|
- # make a copy of the cropped frame
|
|
|
|
- with prepped_frame_locks[i]:
|
|
|
|
- prepped_frame_copy = prepped_frame_nps[i].copy()
|
|
|
|
- frame_time = prepped_frame_times[i].value
|
|
|
|
- region_box[:] = prepped_frame_boxes[i]
|
|
|
|
-
|
|
|
|
- # Actual detection.
|
|
|
|
- objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
|
- # print(engine.get_inference_time())
|
|
|
|
- # put detected objects in the queue
|
|
|
|
- if objects:
|
|
|
|
- for obj in objects:
|
|
|
|
- box = obj.bounding_box.flatten().tolist()
|
|
|
|
- object_queue.put({
|
|
|
|
- 'frame_time': frame_time,
|
|
|
|
- 'name': str(labels[obj.label_id]),
|
|
|
|
- 'score': float(obj.score),
|
|
|
|
- 'xmin': int((box[0] * region_box[0]) + region_box[1]),
|
|
|
|
- 'ymin': int((box[1] * region_box[0]) + region_box[2]),
|
|
|
|
- 'xmax': int((box[2] * region_box[0]) + region_box[1]),
|
|
|
|
- 'ymax': int((box[3] * region_box[0]) + region_box[2])
|
|
|
|
- })
|
|
|
|
- else:
|
|
|
|
- object_queue.put({
|
|
|
|
- 'frame_time': frame_time,
|
|
|
|
- 'name': 'dummy',
|
|
|
|
- 'score': 0.99,
|
|
|
|
- 'xmin': int(0 + region_box[1]),
|
|
|
|
- 'ymin': int(0 + region_box[2]),
|
|
|
|
- 'xmax': int(10 + region_box[1]),
|
|
|
|
- 'ymax': int(10 + region_box[2])
|
|
|
|
- })
|
|
|
|
- # wait for the global motion flag to change
|
|
|
|
- with motion_changed:
|
|
|
|
- motion_changed.wait()
|
|
|
|
-
|
|
|
|
-def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
|
|
|
|
- motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
|
|
- prepped_frame_array, prepped_frame_time, prepped_frame_lock):
|
|
|
|
- # shape shared input array into frame for processing
|
|
|
|
- shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
|
|
|
|
-
|
|
|
|
- shared_prepped_frame = tonumpyarray(prepped_frame_array).reshape((1,300,300,3))
|
|
|
|
|
|
+ # wait until a frame is ready
|
|
|
|
+ prepped_frame_grabbed.clear()
|
|
|
|
+ prepped_frame_ready.wait()
|
|
|
|
|
|
- frame_time = 0.0
|
|
|
|
- while True:
|
|
|
|
- now = datetime.datetime.now().timestamp()
|
|
|
|
-
|
|
|
|
- # wait until motion is detected
|
|
|
|
- motion_detected.wait()
|
|
|
|
-
|
|
|
|
- with frame_ready:
|
|
|
|
- # if there isnt a frame ready for processing or it is old, wait for a new frame
|
|
|
|
- if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
|
|
- frame_ready.wait()
|
|
|
|
-
|
|
|
|
- # make a copy of the cropped frame
|
|
|
|
- with frame_lock:
|
|
|
|
- cropped_frame = shared_whole_frame[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
|
- frame_time = shared_frame_time.value
|
|
|
|
-
|
|
|
|
- # convert to RGB
|
|
|
|
- cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
|
|
- # Resize to 300x300 if needed
|
|
|
|
- if cropped_frame_rgb.shape != (300, 300, 3):
|
|
|
|
- cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
|
|
|
- # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
|
|
|
- frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
|
|
|
-
|
|
|
|
- # copy the prepped frame to the shared output array
|
|
|
|
- with prepped_frame_lock:
|
|
|
|
- shared_prepped_frame[:] = frame_expanded
|
|
|
|
- prepped_frame_time.value = frame_time
|
|
|
|
|
|
+ prepped_frame_copy = prepped_frame_np.copy()
|
|
|
|
+ frame_time = prepped_frame_time.value
|
|
|
|
+ region_box[:] = prepped_frame_box
|
|
|
|
+
|
|
|
|
+ prepped_frame_grabbed.set()
|
|
|
|
+
|
|
|
|
+ # Actual detection.
|
|
|
|
+ objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
|
+ # print(engine.get_inference_time())
|
|
|
|
+ # put detected objects in the queue
|
|
|
|
+ if objects:
|
|
|
|
+ for obj in objects:
|
|
|
|
+ box = obj.bounding_box.flatten().tolist()
|
|
|
|
+ object_queue.put({
|
|
|
|
+ 'frame_time': frame_time,
|
|
|
|
+ 'name': str(labels[obj.label_id]),
|
|
|
|
+ 'score': float(obj.score),
|
|
|
|
+ 'xmin': int((box[0] * region_box[0]) + region_box[1]),
|
|
|
|
+ 'ymin': int((box[1] * region_box[0]) + region_box[2]),
|
|
|
|
+ 'xmax': int((box[2] * region_box[0]) + region_box[1]),
|
|
|
|
+ 'ymax': int((box[3] * region_box[0]) + region_box[2])
|
|
|
|
+ })
|
|
|
|
+ else:
|
|
|
|
+ object_queue.put({
|
|
|
|
+ 'frame_time': frame_time,
|
|
|
|
+ 'name': 'dummy',
|
|
|
|
+ 'score': 0.99,
|
|
|
|
+ 'xmin': int(0 + region_box[1]),
|
|
|
|
+ 'ymin': int(0 + region_box[2]),
|
|
|
|
+ 'xmax': int(10 + region_box[1]),
|
|
|
|
+ 'ymax': int(10 + region_box[2])
|
|
|
|
+ })
|
|
|
|
+
|
|
|
|
+class PreppedQueueProcessor(threading.Thread):
|
|
|
|
+ def __init__(self, prepped_frame_array,
|
|
|
|
+ prepped_frame_time,
|
|
|
|
+ prepped_frame_ready,
|
|
|
|
+ prepped_frame_grabbed,
|
|
|
|
+ prepped_frame_box,
|
|
|
|
+ prepped_frame_queue):
|
|
|
|
+
|
|
|
|
+ threading.Thread.__init__(self)
|
|
|
|
+ self.prepped_frame_array = prepped_frame_array
|
|
|
|
+ self.prepped_frame_time = prepped_frame_time
|
|
|
|
+ self.prepped_frame_ready = prepped_frame_ready
|
|
|
|
+ self.prepped_frame_grabbed = prepped_frame_grabbed
|
|
|
|
+ self.prepped_frame_box = prepped_frame_box
|
|
|
|
+ self.prepped_frame_queue = prepped_frame_queue
|
|
|
|
+
|
|
|
|
+ def run(self):
|
|
|
|
+ prepped_frame_np = tonumpyarray(self.prepped_frame_array)
|
|
|
|
+ # process queue...
|
|
|
|
+ while True:
|
|
|
|
+ frame = self.prepped_frame_queue.get()
|
|
|
|
+ print(self.prepped_frame_queue.qsize())
|
|
|
|
+ prepped_frame_np[:] = frame['frame']
|
|
|
|
+ self.prepped_frame_time.value = frame['frame_time']
|
|
|
|
+ self.prepped_frame_box[0] = frame['region_size']
|
|
|
|
+ self.prepped_frame_box[1] = frame['region_x_offset']
|
|
|
|
+ self.prepped_frame_box[2] = frame['region_y_offset']
|
|
|
|
+ self.prepped_frame_ready.set()
|
|
|
|
+ self.prepped_frame_grabbed.wait()
|
|
|
|
+ self.prepped_frame_ready.clear()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# should this be a region class?
|
|
|
|
+class FramePrepper(threading.Thread):
|
|
|
|
+ def __init__(self, shared_frame, frame_time, frame_ready,
|
|
|
|
+ frame_lock, motion_detected,
|
|
|
|
+ region_size, region_x_offset, region_y_offset,
|
|
|
|
+ prepped_frame_queue):
|
|
|
|
+
|
|
|
|
+ threading.Thread.__init__(self)
|
|
|
|
+ self.shared_frame = shared_frame
|
|
|
|
+ self.frame_time = frame_time
|
|
|
|
+ self.frame_ready = frame_ready
|
|
|
|
+ self.frame_lock = frame_lock
|
|
|
|
+ self.motion_detected = motion_detected
|
|
|
|
+ self.region_size = region_size
|
|
|
|
+ self.region_x_offset = region_x_offset
|
|
|
|
+ self.region_y_offset = region_y_offset
|
|
|
|
+ self.prepped_frame_queue = prepped_frame_queue
|
|
|
|
+
|
|
|
|
+ def run(self):
|
|
|
|
+ frame_time = 0.0
|
|
|
|
+ while True:
|
|
|
|
+ now = datetime.datetime.now().timestamp()
|
|
|
|
+
|
|
|
|
+ # wait until motion is detected
|
|
|
|
+ self.motion_detected.wait()
|
|
|
|
+
|
|
|
|
+ with self.frame_ready:
|
|
|
|
+ # if there isnt a frame ready for processing or it is old, wait for a new frame
|
|
|
|
+ if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
|
|
|
+ self.frame_ready.wait()
|
|
|
|
+
|
|
|
|
+ # make a copy of the cropped frame
|
|
|
|
+ with self.frame_lock:
|
|
|
|
+ cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
|
|
|
|
+ frame_time = self.frame_time.value
|
|
|
|
+
|
|
|
|
+ # convert to RGB
|
|
|
|
+ cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
|
|
+ # Resize to 300x300 if needed
|
|
|
|
+ if cropped_frame_rgb.shape != (300, 300, 3):
|
|
|
|
+ cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
|
|
|
+ # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
|
|
|
+ frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
|
|
|
+
|
|
|
|
+ # add the frame to the queue
|
|
|
|
+ self.prepped_frame_queue.put({
|
|
|
|
+ 'frame_time': frame_time,
|
|
|
|
+ 'frame': frame_expanded.flatten().copy(),
|
|
|
|
+ 'region_size': self.region_size,
|
|
|
|
+ 'region_x_offset': self.region_x_offset,
|
|
|
|
+ 'region_y_offset': self.region_y_offset
|
|
|
|
+ })
|