|
@@ -1,4 +1,5 @@
|
|
|
import datetime
|
|
|
+import time
|
|
|
import cv2
|
|
|
import threading
|
|
|
import numpy as np
|
|
@@ -33,7 +34,6 @@ def detect_objects(prepped_frame_array, prepped_frame_time,
|
|
|
region_box = [0,0,0]
|
|
|
while True:
|
|
|
# wait until a frame is ready
|
|
|
- prepped_frame_grabbed.clear()
|
|
|
prepped_frame_ready.wait()
|
|
|
|
|
|
prepped_frame_copy = prepped_frame_np.copy()
|
|
@@ -41,10 +41,13 @@ def detect_objects(prepped_frame_array, prepped_frame_time,
|
|
|
region_box[:] = prepped_frame_box
|
|
|
|
|
|
prepped_frame_grabbed.set()
|
|
|
+ # print("Grabbed " + str(region_box[1]) + "," + str(region_box[2]))
|
|
|
|
|
|
# Actual detection.
|
|
|
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
- # print(engine.get_inference_time())
|
|
|
+ # time.sleep(0.1)
|
|
|
+ # objects = []
|
|
|
+ print(engine.get_inference_time())
|
|
|
# put detected objects in the queue
|
|
|
if objects:
|
|
|
for obj in objects:
|
|
@@ -90,14 +93,16 @@ class PreppedQueueProcessor(threading.Thread):
|
|
|
# process queue...
|
|
|
while True:
|
|
|
frame = self.prepped_frame_queue.get()
|
|
|
- print(self.prepped_frame_queue.qsize())
|
|
|
+ # print(self.prepped_frame_queue.qsize())
|
|
|
prepped_frame_np[:] = frame['frame']
|
|
|
self.prepped_frame_time.value = frame['frame_time']
|
|
|
self.prepped_frame_box[0] = frame['region_size']
|
|
|
self.prepped_frame_box[1] = frame['region_x_offset']
|
|
|
self.prepped_frame_box[2] = frame['region_y_offset']
|
|
|
+ # print("Passed " + str(frame['region_x_offset']) + "," + str(frame['region_x_offset']))
|
|
|
self.prepped_frame_ready.set()
|
|
|
self.prepped_frame_grabbed.wait()
|
|
|
+ self.prepped_frame_grabbed.clear()
|
|
|
self.prepped_frame_ready.clear()
|
|
|
|
|
|
|
|
@@ -145,11 +150,15 @@ class FramePrepper(threading.Thread):
|
|
|
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
|
|
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
|
|
|
|
|
+ # print("Prepped frame at " + str(self.region_x_offset) + "," + str(self.region_y_offset))
|
|
|
# add the frame to the queue
|
|
|
- self.prepped_frame_queue.put({
|
|
|
- 'frame_time': frame_time,
|
|
|
- 'frame': frame_expanded.flatten().copy(),
|
|
|
- 'region_size': self.region_size,
|
|
|
- 'region_x_offset': self.region_x_offset,
|
|
|
- 'region_y_offset': self.region_y_offset
|
|
|
- })
|
|
|
+ if not self.prepped_frame_queue.full():
|
|
|
+ self.prepped_frame_queue.put({
|
|
|
+ 'frame_time': frame_time,
|
|
|
+ 'frame': frame_expanded.flatten().copy(),
|
|
|
+ 'region_size': self.region_size,
|
|
|
+ 'region_x_offset': self.region_x_offset,
|
|
|
+ 'region_y_offset': self.region_y_offset
|
|
|
+ })
|
|
|
+ # else:
|
|
|
+ # print("queue full. moving on")
|