|
@@ -3,8 +3,10 @@ import datetime
|
|
|
import threading
|
|
|
import cv2
|
|
|
import prctl
|
|
|
+import itertools
|
|
|
import numpy as np
|
|
|
-from . util import draw_box_with_label, LABELS
|
|
|
+from scipy.spatial import distance as dist
|
|
|
+from . util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
|
|
|
|
|
|
class ObjectCleaner(threading.Thread):
|
|
|
def __init__(self, objects_parsed, detected_objects):
|
|
@@ -25,14 +27,13 @@ class ObjectCleaner(threading.Thread):
|
|
|
# (newest objects are appended to the end)
|
|
|
detected_objects = self._detected_objects.copy()
|
|
|
|
|
|
- num_to_delete = 0
|
|
|
- for obj in detected_objects:
|
|
|
- if now-obj['frame_time']<2:
|
|
|
- break
|
|
|
- num_to_delete += 1
|
|
|
- if num_to_delete > 0:
|
|
|
- del self._detected_objects[:num_to_delete]
|
|
|
+ objects_removed = False
|
|
|
+ for frame_time in detected_objects.keys():
|
|
|
+ if now-frame_time>2:
|
|
|
+ del self._detected_objects[frame_time]
|
|
|
+ objects_removed = True
|
|
|
|
|
|
+ if objects_removed:
|
|
|
# notify that parsed objects were changed
|
|
|
with self._objects_parsed:
|
|
|
self._objects_parsed.notify_all()
|
|
@@ -49,88 +50,459 @@ class DetectedObjectsProcessor(threading.Thread):
|
|
|
|
|
|
objects = frame['detected_objects']
|
|
|
|
|
|
- if len(objects) == 0:
|
|
|
- return
|
|
|
+ # print(f"Processing objects for: {frame['size']} {frame['x_offset']} {frame['y_offset']}")
|
|
|
+
|
|
|
+ # if len(objects) == 0:
|
|
|
+ # continue
|
|
|
|
|
|
for raw_obj in objects:
|
|
|
obj = {
|
|
|
- 'score': float(raw_obj.score),
|
|
|
- 'box': raw_obj.bounding_box.flatten().tolist(),
|
|
|
'name': str(LABELS[raw_obj.label_id]),
|
|
|
+ 'score': float(raw_obj.score),
|
|
|
+ 'box': {
|
|
|
+ 'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
|
|
|
+ 'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
|
|
|
+ 'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
|
|
|
+ 'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
|
|
|
+ },
|
|
|
+ 'region': {
|
|
|
+ 'xmin': frame['x_offset'],
|
|
|
+ 'ymin': frame['y_offset'],
|
|
|
+ 'xmax': frame['x_offset']+frame['size'],
|
|
|
+ 'ymax': frame['y_offset']+frame['size']
|
|
|
+ },
|
|
|
'frame_time': frame['frame_time'],
|
|
|
'region_id': frame['region_id']
|
|
|
}
|
|
|
|
|
|
- # find the matching region
|
|
|
- region = self.camera.regions[frame['region_id']]
|
|
|
-
|
|
|
- # Compute some extra properties
|
|
|
- obj.update({
|
|
|
- 'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
|
|
|
- 'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
|
|
|
- 'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
|
|
|
- 'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
|
|
|
- })
|
|
|
+ if not obj['name'] == 'bicycle':
|
|
|
+ continue
|
|
|
+
|
|
|
+ # if the object is within 5 pixels of the region border, and the region is not on the edge
|
|
|
+ # consider the object to be clipped
|
|
|
+ obj['clipped'] = False
|
|
|
+ if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
|
|
|
+ (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
|
|
|
+ (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
|
|
|
+ (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
|
|
|
+ obj['clipped'] = True
|
|
|
|
|
|
# Compute the area
|
|
|
- obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
|
|
+ obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
|
|
|
|
|
|
- object_name = obj['name']
|
|
|
+ # find the matching region
|
|
|
+ # region = self.camera.regions[frame['region_id']]
|
|
|
+
|
|
|
|
|
|
- if object_name in region['objects']:
|
|
|
- obj_settings = region['objects'][object_name]
|
|
|
+ # object_name = obj['name']
|
|
|
+ # TODO: move all this to wherever we manage "tracked objects"
|
|
|
+ # if object_name in region['objects']:
|
|
|
+ # obj_settings = region['objects'][object_name]
|
|
|
|
|
|
- # if the min area is larger than the
|
|
|
- # detected object, don't add it to detected objects
|
|
|
- if obj_settings.get('min_area',-1) > obj['area']:
|
|
|
- continue
|
|
|
+ # # if the min area is larger than the
|
|
|
+ # # detected object, don't add it to detected objects
|
|
|
+ # if obj_settings.get('min_area',-1) > obj['area']:
|
|
|
+ # continue
|
|
|
|
|
|
- # if the detected object is larger than the
|
|
|
- # max area, don't add it to detected objects
|
|
|
- if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
|
|
- continue
|
|
|
-
|
|
|
- # if the score is lower than the threshold, skip
|
|
|
- if obj_settings.get('threshold', 0) > obj['score']:
|
|
|
- continue
|
|
|
-
|
|
|
- # compute the coordinates of the object and make sure
|
|
|
- # the location isnt outside the bounds of the image (can happen from rounding)
|
|
|
- y_location = min(int(obj['ymax']), len(self.mask)-1)
|
|
|
- x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
|
|
-
|
|
|
- # if the object is in a masked location, don't add it to detected objects
|
|
|
- if self.camera.mask[y_location][x_location] == [0]:
|
|
|
- continue
|
|
|
+ # # if the detected object is larger than the
|
|
|
+ # # max area, don't add it to detected objects
|
|
|
+ # if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
|
|
+ # continue
|
|
|
+
|
|
|
+ # # if the score is lower than the threshold, skip
|
|
|
+ # if obj_settings.get('threshold', 0) > obj['score']:
|
|
|
+ # continue
|
|
|
|
|
|
- # look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
|
|
|
- # if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or
|
|
|
- # (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
|
|
|
- # (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
|
|
|
- # (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
|
|
|
-
|
|
|
- # size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
|
|
|
- # This triggers WAY too often with stationary objects on the edge of a region.
|
|
|
- # Every frame triggers it and fills the queue...
|
|
|
- # I need to create a new region and add it to the list of regions, but
|
|
|
- # it needs to check for a duplicate region first.
|
|
|
-
|
|
|
- # self.resize_queue.put({
|
|
|
- # 'camera_name': self.name,
|
|
|
- # 'frame_time': frame['frame_time'],
|
|
|
- # 'region_id': frame['region_id'],
|
|
|
- # 'size': size,
|
|
|
- # 'x_offset': x_offset,
|
|
|
- # 'y_offset': y_offset
|
|
|
- # })
|
|
|
- # print('object too close to region border')
|
|
|
- #continue
|
|
|
-
|
|
|
- self.camera.detected_objects.append(obj)
|
|
|
+ # # compute the coordinates of the object and make sure
|
|
|
+ # # the location isnt outside the bounds of the image (can happen from rounding)
|
|
|
+ # y_location = min(int(obj['ymax']), len(self.mask)-1)
|
|
|
+ # x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
|
|
+
|
|
|
+ # # if the object is in a masked location, don't add it to detected objects
|
|
|
+ # if self.camera.mask[y_location][x_location] == [0]:
|
|
|
+ # continue
|
|
|
+
|
|
|
+ # see if the current object is a duplicate
|
|
|
+ # TODO: still need to decide which copy to keep
|
|
|
+ obj['duplicate'] = False
|
|
|
+ for existing_obj in self.camera.detected_objects[frame['frame_time']]:
|
|
|
+ # compute intersection rectangle with existing object and new objects region
|
|
|
+ existing_obj_current_region = compute_intersection_rectangle(existing_obj['box'], obj['region'])
|
|
|
+
|
|
|
+ # compute intersection rectangle with new object and existing objects region
|
|
|
+ new_obj_existing_region = compute_intersection_rectangle(obj['box'], existing_obj['region'])
|
|
|
+
|
|
|
+ # compute iou for the two intersection rectangles that were just computed
|
|
|
+ iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
|
|
+
|
|
|
+ # if intersection is greater than ?, flag as duplicate
|
|
|
+ if iou > .7:
|
|
|
+ obj['duplicate'] = True
|
|
|
+ break
|
|
|
+
|
|
|
+ self.camera.detected_objects[frame['frame_time']].append(obj)
|
|
|
+
|
|
|
+ with self.camera.regions_in_process_lock:
|
|
|
+ self.camera.regions_in_process[frame['frame_time']] -= 1
|
|
|
+ # print(f"Remaining regions for {frame['frame_time']}: {self.camera.regions_in_process[frame['frame_time']]}")
|
|
|
+
|
|
|
+ if self.camera.regions_in_process[frame['frame_time']] == 0:
|
|
|
+ del self.camera.regions_in_process[frame['frame_time']]
|
|
|
+ # print('Finished frame: ', frame['frame_time'])
|
|
|
+ self.camera.finished_frame_queue.put(frame['frame_time'])
|
|
|
|
|
|
with self.camera.objects_parsed:
|
|
|
self.camera.objects_parsed.notify_all()
|
|
|
|
|
|
+# Thread that checks finished frames for clipped objects and sends back
|
|
|
+# for processing if needed
|
|
|
+class RegionRefiner(threading.Thread):
|
|
|
+ def __init__(self, camera):
|
|
|
+ threading.Thread.__init__(self)
|
|
|
+ self.camera = camera
|
|
|
+
|
|
|
+ def run(self):
|
|
|
+ prctl.set_name(self.__class__.__name__)
|
|
|
+ while True:
|
|
|
+ # TODO: I need to process the frames in order for tracking...
|
|
|
+ frame_time = self.camera.finished_frame_queue.get()
|
|
|
+
|
|
|
+ # print(f"{frame_time} finished")
|
|
|
+
|
|
|
+ object_groups = []
|
|
|
+
|
|
|
+ # group all the duplicate objects together
|
|
|
+ # TODO: should I be grouping by object type too? also, the order can determine how well they group...
|
|
|
+ for new_obj in self.camera.detected_objects[frame_time]:
|
|
|
+ matching_group = self.find_group(new_obj, object_groups)
|
|
|
+ if matching_group is None:
|
|
|
+ object_groups.append([new_obj])
|
|
|
+ else:
|
|
|
+ object_groups[matching_group].append(new_obj)
|
|
|
+
|
|
|
+ # just keep the unclipped objects
|
|
|
+ self.camera.detected_objects[frame_time] = [obj for obj in self.camera.detected_objects[frame_time] if obj['clipped'] == False]
|
|
|
+
|
|
|
+ # print(f"{frame_time} found {len(object_groups)} groups {object_groups}")
|
|
|
+ clipped_object = False
|
|
|
+ # deduped_objects = []
|
|
|
+ # find the largest unclipped object in each group
|
|
|
+ for group in object_groups:
|
|
|
+ unclipped_objects = [obj for obj in group if obj['clipped'] == False]
|
|
|
+ # if no unclipped objects, we need to look again
|
|
|
+ if len(unclipped_objects) == 0:
|
|
|
+ # print(f"{frame_time} no unclipped objects in group")
|
|
|
+ with self.camera.regions_in_process_lock:
|
|
|
+ if not frame_time in self.camera.regions_in_process:
|
|
|
+ self.camera.regions_in_process[frame_time] = 1
|
|
|
+ else:
|
|
|
+ self.camera.regions_in_process[frame_time] += 1
|
|
|
+ xmin = min([obj['box']['xmin'] for obj in group])
|
|
|
+ ymin = min([obj['box']['ymin'] for obj in group])
|
|
|
+ xmax = max([obj['box']['xmax'] for obj in group])
|
|
|
+ ymax = max([obj['box']['ymax'] for obj in group])
|
|
|
+ # calculate a new region that will hopefully get the entire object
|
|
|
+ (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
|
|
+ xmin, ymin,
|
|
|
+ xmax, ymax)
|
|
|
+ # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
|
|
+
|
|
|
+ # add it to the queue
|
|
|
+ self.camera.resize_queue.put({
|
|
|
+ 'camera_name': self.camera.name,
|
|
|
+ 'frame_time': frame_time,
|
|
|
+ 'region_id': -1,
|
|
|
+ 'size': size,
|
|
|
+ 'x_offset': x_offset,
|
|
|
+ 'y_offset': y_offset
|
|
|
+ })
|
|
|
+ self.camera.dynamic_region_fps.update()
|
|
|
+ clipped_object = True
|
|
|
+
|
|
|
+ # add the largest unclipped object
|
|
|
+ # TODO: this makes no sense
|
|
|
+ # deduped_objects.append(max(unclipped_objects, key=lambda obj: obj['area']))
|
|
|
+
|
|
|
+ # if we found a clipped object, then this frame is not ready for processing
|
|
|
+ if clipped_object:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # print(f"{frame_time} is actually finished")
|
|
|
+ # self.camera.detected_objects[frame_time] = deduped_objects
|
|
|
+
|
|
|
+ # keep adding frames to the refined queue as long as they are finished
|
|
|
+ with self.camera.regions_in_process_lock:
|
|
|
+ while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
|
|
+ self.camera.refined_frame_queue.put(self.camera.frame_queue.get())
|
|
|
+
|
|
|
+ def has_overlap(self, new_obj, obj, overlap=0):
|
|
|
+ # compute intersection rectangle with existing object and new objects region
|
|
|
+ existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
|
|
+
|
|
|
+ # compute intersection rectangle with new object and existing objects region
|
|
|
+ new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
|
|
|
+
|
|
|
+ # compute iou for the two intersection rectangles that were just computed
|
|
|
+ iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
|
|
+
|
|
|
+ # if intersection is greater than overlap
|
|
|
+ if iou > overlap:
|
|
|
+ return True
|
|
|
+ else:
|
|
|
+ return False
|
|
|
+
|
|
|
+ def find_group(self, new_obj, groups):
|
|
|
+ for index, group in enumerate(groups):
|
|
|
+ for obj in group:
|
|
|
+ if self.has_overlap(new_obj, obj):
|
|
|
+ return index
|
|
|
+ return None
|
|
|
+
|
|
|
+class ObjectTracker(threading.Thread):
|
|
|
+ def __init__(self, camera, max_disappeared):
|
|
|
+ threading.Thread.__init__(self)
|
|
|
+ self.camera = camera
|
|
|
+ self.tracked_objects = {}
|
|
|
+ self.disappeared = {}
|
|
|
+ self.max_disappeared = max_disappeared
|
|
|
+
|
|
|
+ def run(self):
|
|
|
+ prctl.set_name(self.__class__.__name__)
|
|
|
+ while True:
|
|
|
+ # TODO: track objects
|
|
|
+ frame_time = self.camera.refined_frame_queue.get()
|
|
|
+ f = open(f"/debug/{str(frame_time)}.jpg", 'wb')
|
|
|
+ f.write(self.camera.frame_with_objects(frame_time))
|
|
|
+ f.close()
|
|
|
+
|
|
|
+
|
|
|
+ def register(self, index, obj):
|
|
|
+ id = f"{str(obj.frame_time)}-{index}"
|
|
|
+ self.tracked_objects[id] = obj
|
|
|
+ self.disappeared[id] = 0
|
|
|
+
|
|
|
+ def deregister(self, id):
|
|
|
+ del self.disappeared[id]
|
|
|
+ del self.tracked_objects[id]
|
|
|
+
|
|
|
+ def update(self, id, new_obj):
|
|
|
+ new_obj.detections = self.tracked_objects[id].detections
|
|
|
+ new_obj.detections.append({
|
|
|
+
|
|
|
+ })
|
|
|
+
|
|
|
+ def match_and_update(self, new_objects):
|
|
|
+ # check to see if the list of input bounding box rectangles
|
|
|
+ # is empty
|
|
|
+ if len(new_objects) == 0:
|
|
|
+ # loop over any existing tracked objects and mark them
|
|
|
+ # as disappeared
|
|
|
+ for objectID in list(self.disappeared.keys()):
|
|
|
+ self.disappeared[objectID] += 1
|
|
|
+
|
|
|
+ # if we have reached a maximum number of consecutive
|
|
|
+ # frames where a given object has been marked as
|
|
|
+ # missing, deregister it
|
|
|
+ if self.disappeared[objectID] > self.max_disappeared:
|
|
|
+ self.deregister(objectID)
|
|
|
+
|
|
|
+ # return early as there are no centroids or tracking info
|
|
|
+ # to update
|
|
|
+ return
|
|
|
+
|
|
|
+ # compute centroids
|
|
|
+ for obj in new_objects:
|
|
|
+ centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
|
|
|
+ centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
|
|
|
+ obj.centroid = (centroid_x, centroid_y)
|
|
|
+
|
|
|
+ if len(self.tracked_objects) == 0:
|
|
|
+ for index, obj in enumerate(new_objects):
|
|
|
+ self.register(index, obj)
|
|
|
+ return
|
|
|
+
|
|
|
+ new_centroids = np.array([o.centroid for o in new_objects])
|
|
|
+ current_ids = list(self.tracked_objects.keys())
|
|
|
+ current_centroids = np.array([o.centroid for o in self.tracked_objects])
|
|
|
+
|
|
|
+ # compute the distance between each pair of tracked
|
|
|
+ # centroids and new centroids, respectively -- our
|
|
|
+ # goal will be to match each new centroid to an existing
|
|
|
+ # object centroid
|
|
|
+ D = dist.cdist(current_centroids, new_centroids)
|
|
|
+
|
|
|
+ # in order to perform this matching we must (1) find the
|
|
|
+ # smallest value in each row and then (2) sort the row
|
|
|
+ # indexes based on their minimum values so that the row
|
|
|
+ # with the smallest value is at the *front* of the index
|
|
|
+ # list
|
|
|
+ rows = D.min(axis=1).argsort()
|
|
|
+
|
|
|
+ # next, we perform a similar process on the columns by
|
|
|
+ # finding the smallest value in each column and then
|
|
|
+ # sorting using the previously computed row index list
|
|
|
+ cols = D.argmin(axis=1)[rows]
|
|
|
+
|
|
|
+ # in order to determine if we need to update, register,
|
|
|
+ # or deregister an object we need to keep track of which
|
|
|
+ # of the rows and column indexes we have already examined
|
|
|
+ usedRows = set()
|
|
|
+ usedCols = set()
|
|
|
+
|
|
|
+ # loop over the combination of the (row, column) index
|
|
|
+ # tuples
|
|
|
+ for (row, col) in zip(rows, cols):
|
|
|
+ # if we have already examined either the row or
|
|
|
+ # column value before, ignore it
|
|
|
+ # val
|
|
|
+ if row in usedRows or col in usedCols:
|
|
|
+ continue
|
|
|
+
|
|
|
+ # otherwise, grab the object ID for the current row,
|
|
|
+ # set its new centroid, and reset the disappeared
|
|
|
+ # counter
|
|
|
+ objectID = current_ids[row]
|
|
|
+ self.update(objectID, new_objects[col])
|
|
|
+ self.disappeared[objectID] = 0
|
|
|
+
|
|
|
+ # indicate that we have examined each of the row and
|
|
|
+ # column indexes, respectively
|
|
|
+ usedRows.add(row)
|
|
|
+ usedCols.add(col)
|
|
|
+
|
|
|
+ # compute both the row and column index we have NOT yet
|
|
|
+ # examined
|
|
|
+ unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
|
|
+ unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
|
|
+
|
|
|
+ # in the event that the number of object centroids is
|
|
|
+ # equal or greater than the number of input centroids
|
|
|
+ # we need to check and see if some of these objects have
|
|
|
+ # potentially disappeared
|
|
|
+ if D.shape[0] >= D.shape[1]:
|
|
|
+ # loop over the unused row indexes
|
|
|
+ for row in unusedRows:
|
|
|
+ # grab the object ID for the corresponding row
|
|
|
+ # index and increment the disappeared counter
|
|
|
+ objectID = current_ids[row]
|
|
|
+ self.disappeared[objectID] += 1
|
|
|
+
|
|
|
+ # check to see if the number of consecutive
|
|
|
+ # frames the object has been marked "disappeared"
|
|
|
+ # for warrants deregistering the object
|
|
|
+ if self.disappeared[objectID] > self.max_disappeared:
|
|
|
+ self.deregister(objectID)
|
|
|
+
|
|
|
+ # otherwise, if the number of input centroids is greater
|
|
|
+ # than the number of existing object centroids we need to
|
|
|
+ # register each new input centroid as a trackable object
|
|
|
+ else:
|
|
|
+ for col in unusedCols:
|
|
|
+ self.register(col, new_objects[col])
|
|
|
+
|
|
|
+
|
|
|
+ # -------------
|
|
|
+
|
|
|
+ # # initialize an array of input centroids for the current frame
|
|
|
+ # inputCentroids = np.zeros((len(rects), 2), dtype="int")
|
|
|
+
|
|
|
+ # # loop over the bounding box rectangles
|
|
|
+ # for (i, (startX, startY, endX, endY)) in enumerate(rects):
|
|
|
+ # # use the bounding box coordinates to derive the centroid
|
|
|
+ # cX = int((startX + endX) / 2.0)
|
|
|
+ # cY = int((startY + endY) / 2.0)
|
|
|
+ # inputCentroids[i] = (cX, cY)
|
|
|
+
|
|
|
+ # # if we are currently not tracking any objects take the input
|
|
|
+ # # centroids and register each of them
|
|
|
+ # if len(self.objects) == 0:
|
|
|
+ # for i in range(0, len(inputCentroids)):
|
|
|
+ # self.register(inputCentroids[i])
|
|
|
+ # # otherwise, are are currently tracking objects so we need to
|
|
|
+ # # try to match the input centroids to existing object
|
|
|
+ # # centroids
|
|
|
+ # else:
|
|
|
+ # # grab the set of object IDs and corresponding centroids
|
|
|
+ # objectIDs = list(self.objects.keys())
|
|
|
+ # objectCentroids = list(self.objects.values())
|
|
|
+
|
|
|
+ # # compute the distance between each pair of object
|
|
|
+ # # centroids and input centroids, respectively -- our
|
|
|
+ # # goal will be to match an input centroid to an existing
|
|
|
+ # # object centroid
|
|
|
+ # D = dist.cdist(np.array(objectCentroids), inputCentroids)
|
|
|
+
|
|
|
+ # # in order to perform this matching we must (1) find the
|
|
|
+ # # smallest value in each row and then (2) sort the row
|
|
|
+ # # indexes based on their minimum values so that the row
|
|
|
+ # # with the smallest value is at the *front* of the index
|
|
|
+ # # list
|
|
|
+ # rows = D.min(axis=1).argsort()
|
|
|
+
|
|
|
+ # # next, we perform a similar process on the columns by
|
|
|
+ # # finding the smallest value in each column and then
|
|
|
+ # # sorting using the previously computed row index list
|
|
|
+ # cols = D.argmin(axis=1)[rows]
|
|
|
+
|
|
|
+ # # in order to determine if we need to update, register,
|
|
|
+ # # or deregister an object we need to keep track of which
|
|
|
+ # # of the rows and column indexes we have already examined
|
|
|
+ # usedRows = set()
|
|
|
+ # usedCols = set()
|
|
|
+
|
|
|
+ # # loop over the combination of the (row, column) index
|
|
|
+ # # tuples
|
|
|
+ # for (row, col) in zip(rows, cols):
|
|
|
+ # # if we have already examined either the row or
|
|
|
+ # # column value before, ignore it
|
|
|
+ # # val
|
|
|
+ # if row in usedRows or col in usedCols:
|
|
|
+ # continue
|
|
|
+
|
|
|
+ # # otherwise, grab the object ID for the current row,
|
|
|
+ # # set its new centroid, and reset the disappeared
|
|
|
+ # # counter
|
|
|
+ # objectID = objectIDs[row]
|
|
|
+ # self.objects[objectID] = inputCentroids[col]
|
|
|
+ # self.disappeared[objectID] = 0
|
|
|
+
|
|
|
+ # # indicate that we have examined each of the row and
|
|
|
+ # # column indexes, respectively
|
|
|
+ # usedRows.add(row)
|
|
|
+ # usedCols.add(col)
|
|
|
+
|
|
|
+ # # compute both the row and column index we have NOT yet
|
|
|
+ # # examined
|
|
|
+ # unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
|
|
+ # unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
|
|
+
|
|
|
+ # # in the event that the number of object centroids is
|
|
|
+ # # equal or greater than the number of input centroids
|
|
|
+ # # we need to check and see if some of these objects have
|
|
|
+ # # potentially disappeared
|
|
|
+ # if D.shape[0] >= D.shape[1]:
|
|
|
+ # # loop over the unused row indexes
|
|
|
+ # for row in unusedRows:
|
|
|
+ # # grab the object ID for the corresponding row
|
|
|
+ # # index and increment the disappeared counter
|
|
|
+ # objectID = objectIDs[row]
|
|
|
+ # self.disappeared[objectID] += 1
|
|
|
+
|
|
|
+ # # check to see if the number of consecutive
|
|
|
+ # # frames the object has been marked "disappeared"
|
|
|
+ # # for warrants deregistering the object
|
|
|
+ # if self.disappeared[objectID] > self.maxDisappeared:
|
|
|
+ # self.deregister(objectID)
|
|
|
+
|
|
|
+ # # otherwise, if the number of input centroids is greater
|
|
|
+ # # than the number of existing object centroids we need to
|
|
|
+ # # register each new input centroid as a trackable object
|
|
|
+ # else:
|
|
|
+ # for col in unusedCols:
|
|
|
+ # self.register(inputCentroids[col])
|
|
|
+
|
|
|
+ # # return the set of trackable objects
|
|
|
+ # return self.objects
|
|
|
|
|
|
# Maintains the frame and object with the highest score
|
|
|
class BestFrames(threading.Thread):
|
|
@@ -153,7 +525,7 @@ class BestFrames(threading.Thread):
|
|
|
# make a copy of detected objects
|
|
|
detected_objects = self.detected_objects.copy()
|
|
|
|
|
|
- for obj in detected_objects:
|
|
|
+ for obj in itertools.chain.from_iterable(detected_objects.values()):
|
|
|
if obj['name'] in self.best_objects:
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
# if the object is a higher score than the current best score
|
|
@@ -170,8 +542,8 @@ class BestFrames(threading.Thread):
|
|
|
if obj['frame_time'] in recent_frames:
|
|
|
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
|
|
|
|
|
|
- draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
|
|
|
- obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
|
|
+ draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
|
|
+ obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}")
|
|
|
|
|
|
# print a timestamp
|
|
|
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|