|
@@ -29,9 +29,9 @@ categories = label_map_util.convert_label_map_to_categories(label_map, max_num_c
|
|
|
use_display_name=True)
|
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
|
|
-def detect_objects(image_np, sess, detection_graph):
|
|
|
+def detect_objects(cropped_frame, full_frame, sess, detection_graph):
|
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
|
- image_np_expanded = np.expand_dims(image_np, axis=0)
|
|
|
+ image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
|
|
|
|
# Each box represents a part of the image where a particular object was detected.
|
|
@@ -52,22 +52,41 @@ def detect_objects(image_np, sess, detection_graph):
|
|
|
objects = []
|
|
|
for index, value in enumerate(classes[0]):
|
|
|
object_dict = {}
|
|
|
- if scores[0, index] > 0.5:
|
|
|
+ if scores[0, index] > 0.1:
|
|
|
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
|
|
|
scores[0, index]
|
|
|
objects.append(object_dict)
|
|
|
|
|
|
+ squeezed_boxes = np.squeeze(boxes)
|
|
|
+ squeezed_scores = np.squeeze(scores)
|
|
|
+
|
|
|
+ if(len(objects)>0):
|
|
|
+ # reposition bounding box based on full frame
|
|
|
+ for i, box in enumerate(squeezed_boxes):
|
|
|
+ if squeezed_scores[i] > .1:
|
|
|
+ ymin = ((box[0] * 300) + 200)/1080 # ymin
|
|
|
+ xmin = ((box[1] * 300) + 1300)/1920 # xmin
|
|
|
+ xmax = ((box[2] * 300) + 200)/1080 # ymax
|
|
|
+ ymax = ((box[3] * 300) + 1300)/1920 # xmax
|
|
|
+ print("ymin", box[0] * 300, ymin)
|
|
|
+ print("xmin", box[1] * 300, xmin)
|
|
|
+ print("ymax", box[2] * 300, ymax)
|
|
|
+ print("xmax", box[3] * 300, xmax)
|
|
|
+
|
|
|
# draw boxes for detected objects on image
|
|
|
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
|
- image_np,
|
|
|
- np.squeeze(boxes),
|
|
|
+ cropped_frame,
|
|
|
+ squeezed_boxes,
|
|
|
np.squeeze(classes).astype(np.int32),
|
|
|
- np.squeeze(scores),
|
|
|
+ squeezed_scores,
|
|
|
category_index,
|
|
|
use_normalized_coordinates=True,
|
|
|
- line_thickness=4)
|
|
|
+ line_thickness=4,
|
|
|
+ min_score_thresh=.1)
|
|
|
+
|
|
|
+ # cv2.rectangle(full_frame, (800, 100), (1250, 550), (255,0,0), 2)
|
|
|
|
|
|
- return objects, image_np
|
|
|
+ return objects, cropped_frame
|
|
|
|
|
|
def main():
|
|
|
# capture a single frame and check the frame shape so the correct array
|
|
@@ -88,18 +107,21 @@ def main():
|
|
|
shared_frame_time = mp.Value('d', 0.0)
|
|
|
# compute the flattened array length from the array shape
|
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
|
- # create shared array for passing the image data from capture to detect_objects
|
|
|
+ # create shared array for storing the full frame image data
|
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
|
+ # create shared array for storing the cropped frame image data
|
|
|
+ # TODO: make dynamic
|
|
|
+ shared_cropped_arr = mp.Array(ctypes.c_uint16, 300*300*3)
|
|
|
# create shared array for passing the image data from detect_objects to flask
|
|
|
- shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
|
+ shared_output_arr = mp.Array(ctypes.c_uint16, 300*300*3)#flat_array_length)
|
|
|
# create a numpy array with the image shape from the shared memory array
|
|
|
# this is used by flask to output an mjpeg stream
|
|
|
- frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
|
+ frame_output_arr = tonumpyarray(shared_output_arr).reshape(300,300,3)
|
|
|
|
|
|
- capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
|
|
|
+ capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
|
|
|
capture_process.daemon = True
|
|
|
|
|
|
- detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape))
|
|
|
+ detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape))
|
|
|
detection_process.daemon = True
|
|
|
|
|
|
capture_process.start()
|
|
@@ -119,9 +141,9 @@ def main():
|
|
|
# max out at 5 FPS
|
|
|
time.sleep(0.2)
|
|
|
# convert back to BGR
|
|
|
- frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
|
|
|
+ # frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
|
|
|
# encode the image into a jpg
|
|
|
- ret, jpg = cv2.imencode('.jpg', frame_bgr)
|
|
|
+ ret, jpg = cv2.imencode('.jpg', frame_output_arr)
|
|
|
yield (b'--frame\r\n'
|
|
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
|
@@ -136,9 +158,10 @@ def tonumpyarray(mp_arr):
|
|
|
|
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
|
# detection_process has consumed the current frame
|
|
|
-def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
|
|
+def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape):
|
|
|
# convert shared memory array into numpy and shape into image array
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
+ cropped_frame = tonumpyarray(shared_cropped_arr).reshape(300,300,3)
|
|
|
|
|
|
# start the video capture
|
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
@@ -158,6 +181,12 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
|
|
ret, frame = video.retrieve()
|
|
|
if ret:
|
|
|
# copy the frame into the numpy array
|
|
|
+ # Position 1
|
|
|
+ # cropped_frame[:] = frame[270:720, 550:1000]
|
|
|
+ # Position 2
|
|
|
+ # frame_cropped = frame[270:720, 100:550]
|
|
|
+ # Car
|
|
|
+ cropped_frame[:] = frame[200:500, 1300:1600]
|
|
|
arr[:] = frame
|
|
|
# signal to the detection_process by setting the shared_frame_time
|
|
|
shared_frame_time.value = frame_time.timestamp()
|
|
@@ -165,11 +194,12 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
|
|
video.release()
|
|
|
|
|
|
# do the actual object detection
|
|
|
-def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape):
|
|
|
+def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape):
|
|
|
# shape shared input array into frame for processing
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
+ shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(300,300,3)
|
|
|
# shape shared output array into frame so it can be copied into
|
|
|
- output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
|
+ output_arr = tonumpyarray(shared_output_arr).reshape(300,300,3)
|
|
|
|
|
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
|
|
detection_graph = tf.Graph()
|
|
@@ -211,14 +241,15 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
|
|
|
|
|
# make a copy of the frame
|
|
|
frame = arr.copy()
|
|
|
+ cropped_frame = shared_cropped_frame.copy()
|
|
|
frame_time = shared_frame_time.value
|
|
|
# signal that the frame has been used so a new one will be ready
|
|
|
shared_frame_time.value = 0.0
|
|
|
|
|
|
# convert to RGB
|
|
|
- frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
|
# do the object detection
|
|
|
- objects, frame_overlay = detect_objects(frame_rgb, sess, detection_graph)
|
|
|
+ objects, frame_overlay = detect_objects(cropped_frame_rgb, frame, sess, detection_graph)
|
|
|
# copy the output frame with the bounding boxes to the output array
|
|
|
output_arr[:] = frame_overlay
|
|
|
if(len(objects) > 0):
|