|
@@ -21,32 +21,34 @@ def ReadLabelFile(file_path):
|
|
|
|
|
|
def detect_objects(prepped_frame_array, prepped_frame_time, prepped_frame_lock,
|
|
|
prepped_frame_ready, prepped_frame_box, object_queue, debug):
|
|
|
+ prepped_frame_np = tonumpyarray(prepped_frame_array)
|
|
|
# Load the edgetpu engine and labels
|
|
|
engine = DetectionEngine(PATH_TO_CKPT)
|
|
|
labels = ReadLabelFile(PATH_TO_LABELS)
|
|
|
|
|
|
- prepped_frame_time = 0.0
|
|
|
+ frame_time = 0.0
|
|
|
+ region_box = [0,0,0,0]
|
|
|
while True:
|
|
|
with prepped_frame_ready:
|
|
|
prepped_frame_ready.wait()
|
|
|
|
|
|
# make a copy of the cropped frame
|
|
|
with prepped_frame_lock:
|
|
|
- prepped_frame_copy = prepped_frame_array.copy()
|
|
|
- prepped_frame_time = prepped_frame_time.value
|
|
|
- region_box = prepped_frame_box.value
|
|
|
+ prepped_frame_copy = prepped_frame_np.copy()
|
|
|
+ frame_time = prepped_frame_time.value
|
|
|
+ region_box[:] = prepped_frame_box
|
|
|
|
|
|
# Actual detection.
|
|
|
- ans = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
-
|
|
|
+ objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
+ # print(engine.get_inference_time())
|
|
|
# put detected objects in the queue
|
|
|
- if ans:
|
|
|
+ if objects:
|
|
|
# assumes square
|
|
|
region_size = region_box[3]-region_box[0]
|
|
|
- for obj in ans:
|
|
|
+ for obj in objects:
|
|
|
box = obj.bounding_box.flatten().tolist()
|
|
|
object_queue.append({
|
|
|
- 'frame_time': prepped_frame_time,
|
|
|
+ 'frame_time': frame_time,
|
|
|
'name': str(labels[obj.label_id]),
|
|
|
'score': float(obj.score),
|
|
|
'xmin': int((box[0] * region_size) + region_box[0]),
|
|
@@ -74,7 +76,6 @@ def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock,
|
|
|
with frame_ready:
|
|
|
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
|
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
|
- print("waiting...")
|
|
|
frame_ready.wait()
|
|
|
|
|
|
# make a copy of the cropped frame
|
|
@@ -82,8 +83,6 @@ def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock,
|
|
|
cropped_frame = shared_whole_frame[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
frame_time = shared_frame_time.value
|
|
|
|
|
|
- print("grabbed frame " + str(frame_time))
|
|
|
-
|
|
|
# convert to RGB
|
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
|
# Resize to 300x300 if needed
|