Przeglądaj źródła

first working version, single region and motion detection disabled

blakeblackshear 6 lat temu
rodzic
commit
8bae05cfe2
6 zmienionych plików z 65 dodań i 72 usunięć
  1. 25 10
      Dockerfile
  2. 9 4
      detect_objects.py
  3. 1 1
      frigate/motion.py
  4. 28 55
      frigate/object_detection.py
  5. 1 1
      frigate/util.py
  6. 1 1
      frigate/video.py

+ 25 - 10
Dockerfile

@@ -26,20 +26,25 @@ RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3
  vim \
  ffmpeg \
  unzip \
+ libusb-1.0-0-dev \
+ python3-setuptools \
+ python3-numpy \
+ zlib1g-dev \
+ libgoogle-glog-dev \
+ swig \
+ libunwind-dev \
+ libc++-dev \
+ libc++abi-dev \
+ build-essential \
  && rm -rf /var/lib/apt/lists/* 
 
 # Install core packages 
 RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
 RUN  pip install -U pip \
  numpy \
+ pillow \
  matplotlib \
  notebook \
- jupyter \
- pandas \
- moviepy \
- tensorflow \
- keras \
- autovizwidget \
  Flask \
  imutils \
  paho-mqtt
@@ -59,9 +64,6 @@ RUN cd /usr/local/src/ \
  && ldconfig \
  && rm -rf /usr/local/src/protobuf-3.5.1/
 
-# Add dataframe display widget
-RUN jupyter nbextension enable --py --sys-prefix widgetsnbextension
-
 # Download & build OpenCV
 RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
 RUN cd /usr/local/src/ \
@@ -75,6 +77,16 @@ RUN cd /usr/local/src/ \
  && make install \
  && rm -rf /usr/local/src/opencv-4.0.1
 
+# Download and install EdgeTPU libraries
+RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz
+
+RUN tar xzf edgetpu_api.tar.gz \
+  && cd python-tflite-source \
+  && cp -p libedgetpu/libedgetpu_arm32_throttled.so /lib/arm-linux-gnueabihf/libedgetpu.so \
+  && cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_arm32.so edgetpu/swig/_edgetpu_cpp_wrapper.so \
+  && cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \
+  && python3 setup.py develop --user
+
 # Minimize image size 
 RUN (apt-get autoremove -y; \
      apt-get autoclean -y)
@@ -87,4 +99,7 @@ WORKDIR /opt/frigate/
 ADD frigate frigate/
 COPY detect_objects.py .
 
-CMD ["python3", "-u", "detect_objects.py"]
+CMD ["python3", "-u", "detect_objects.py"]
+
+# WORKDIR /python-tflite-source/edgetpu/
+# CMD ["python3", "-u", "demo/classify_image.py", "--model", "test_data/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite", "--label", "test_data/inat_bird_labels.txt", "--image", "test_data/parrot.jpg"]

+ 9 - 4
detect_objects.py

@@ -72,7 +72,7 @@ def main():
     # compute the flattened array length from the array shape
     flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
     # create shared array for storing the full frame image data
-    shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
+    shared_arr = mp.Array(ctypes.c_uint8, flat_array_length)
     # create shared value for storing the frame_time
     shared_frame_time = mp.Value('d', 0.0)
     # Lock to control access to the frame
@@ -173,9 +173,14 @@ def main():
         print("detection_process pid ", detection_process.pid)
     
     # start the motion detection processes
-    for motion_process in motion_processes:
-        motion_process.start()
-        print("motion_process pid ", motion_process.pid)
+    # for motion_process in motion_processes:
+    #     motion_process.start()
+    #     print("motion_process pid ", motion_process.pid)
+
+    for region in regions:
+        region['motion_detected'].set()
+    with motion_changed:
+        motion_changed.notify_all()
 
     # create a flask app that encodes frames a mjpeg on demand
     app = Flask(__name__)

+ 1 - 1
frigate/motion.py

@@ -34,7 +34,7 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion
         
         # lock and make a copy of the cropped frame
         with frame_lock: 
-            cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
+            cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
             frame_time = shared_frame_time.value
 
         # convert to grayscale

+ 28 - 55
frigate/object_detection.py

@@ -1,9 +1,8 @@
 import datetime
 import cv2
 import numpy as np
-import tensorflow as tf
-from object_detection.utils import label_map_util
-from object_detection.utils import visualization_utils as vis_util
+from edgetpu.detection.engine import DetectionEngine
+from PIL import Image
 from . util import tonumpyarray
 
 # TODO: make dynamic?
@@ -13,58 +12,38 @@ PATH_TO_CKPT = '/frozen_inference_graph.pb'
 # List of the strings that is used to add correct label for each box.
 PATH_TO_LABELS = '/label_map.pbtext'
 
-# Loading label map
-label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
-categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
-                                                            use_display_name=True)
-category_index = label_map_util.create_category_index(categories)
+# Function to read labels from text files.
+def ReadLabelFile(file_path):
+    with open(file_path, 'r') as f:
+        lines = f.readlines()
+    ret = {}
+    for line in lines:
+        pair = line.strip().split(maxsplit=1)
+        ret[int(pair[0])] = pair[1].strip()
+    return ret
 
 # do the actual object detection
-def tf_detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
+def tf_detect_objects(cropped_frame, engine, labels, region_size, region_x_offset, region_y_offset, debug):
+    # Resize to 300x300
+    cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
     # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
     image_np_expanded = np.expand_dims(cropped_frame, axis=0)
-    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
-
-    # Each box represents a part of the image where a particular object was detected.
-    boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
-
-    # Each score represent how level of confidence for each of the objects.
-    # Score is shown on the result image, together with the class label.
-    scores = detection_graph.get_tensor_by_name('detection_scores:0')
-    classes = detection_graph.get_tensor_by_name('detection_classes:0')
-    num_detections = detection_graph.get_tensor_by_name('num_detections:0')
 
     # Actual detection.
-    (boxes, scores, classes, num_detections) = sess.run(
-        [boxes, scores, classes, num_detections],
-        feed_dict={image_tensor: image_np_expanded})
-
-    if debug:
-        if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
-            vis_util.visualize_boxes_and_labels_on_image_array(
-                cropped_frame,
-                np.squeeze(boxes),
-                np.squeeze(classes).astype(np.int32),
-                np.squeeze(scores),
-                category_index,
-                use_normalized_coordinates=True,
-                line_thickness=4)
-            cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
-
+    ans = engine.DetectWithInputTensor(image_np_expanded.flatten(), threshold=0.5, top_k=3)
 
     # build an array of detected objects
     objects = []
-    for index, value in enumerate(classes[0]):
-        score = scores[0, index]
-        if score > 0.5:
-            box = boxes[0, index].tolist()
+    if ans:
+        for obj in ans:
+            box = obj.bounding_box.flatten().tolist()
             objects.append({
-                        'name': str(category_index.get(value).get('name')),
-                        'score': float(score),
-                        'ymin': int((box[0] * region_size) + region_y_offset),
-                        'xmin': int((box[1] * region_size) + region_x_offset),
-                        'ymax': int((box[2] * region_size) + region_y_offset),
-                        'xmax': int((box[3] * region_size) + region_x_offset)
+                        'name': str(labels[obj.label_id]),
+                        'score': float(obj.score),
+                        'xmin': int((box[0] * region_size) + region_x_offset),
+                        'ymin': int((box[1] * region_size) + region_y_offset),
+                        'xmax': int((box[2] * region_size) + region_x_offset),
+                        'ymax': int((box[3] * region_size) + region_y_offset)
                     })
 
     return objects
@@ -75,15 +54,9 @@ def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, fram
     # shape shared input array into frame for processing
     arr = tonumpyarray(shared_arr).reshape(frame_shape)
 
-    # Load a (frozen) Tensorflow model into memory before the processing loop
-    detection_graph = tf.Graph()
-    with detection_graph.as_default():
-        od_graph_def = tf.GraphDef()
-        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
-            serialized_graph = fid.read()
-            od_graph_def.ParseFromString(serialized_graph)
-            tf.import_graph_def(od_graph_def, name='')
-        sess = tf.Session(graph=detection_graph)
+    # Load the edgetpu engine and labels
+    engine = DetectionEngine(PATH_TO_CKPT)
+    labels = ReadLabelFile(PATH_TO_LABELS)
 
     frame_time = 0.0
     while True:
@@ -105,7 +78,7 @@ def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, fram
         # convert to RGB
         cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
         # do the object detection
-        objects = tf_detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
+        objects = tf_detect_objects(cropped_frame_rgb, engine, labels, region_size, region_x_offset, region_y_offset, debug)
         for obj in objects:
             # ignore persons below the size threshold
             if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:

+ 1 - 1
frigate/util.py

@@ -2,4 +2,4 @@ import numpy as np
 
 # convert shared memory array into numpy array
 def tonumpyarray(mp_arr):
-    return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
+    return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)

+ 1 - 1
frigate/video.py

@@ -78,7 +78,7 @@ class FrameTracker(threading.Thread):
                 
                 # lock and make a copy of the frame
                 with self.frame_lock: 
-                    frame = self.shared_frame.copy().astype('uint8')
+                    frame = self.shared_frame.copy()
                     frame_time = self.frame_time.value
                 
                 # add the frame to recent frames