|
@@ -25,8 +25,9 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
|
# TODO: make dynamic?
|
|
# TODO: make dynamic?
|
|
NUM_CLASSES = 90
|
|
NUM_CLASSES = 90
|
|
|
|
|
|
-REGIONS = "350,0,300:400,350,250:400,750,250"
|
|
|
|
-#REGIONS = os.getenv('REGIONS')
|
|
|
|
|
|
+# REGIONS = "350,0,300:400,350,250:400,750,250"
|
|
|
|
+# REGIONS = "400,350,250"
|
|
|
|
+REGIONS = os.getenv('REGIONS')
|
|
|
|
|
|
DETECTED_OBJECTS = []
|
|
DETECTED_OBJECTS = []
|
|
|
|
|
|
@@ -121,8 +122,6 @@ def main():
|
|
shared_memory_objects = []
|
|
shared_memory_objects = []
|
|
for region in regions:
|
|
for region in regions:
|
|
shared_memory_objects.append({
|
|
shared_memory_objects.append({
|
|
- # create shared value for storing the time the frame was captured
|
|
|
|
- 'frame_time': mp.Value('d', 0.0),
|
|
|
|
# shared value for signaling to the capture process that we are ready for the next frame
|
|
# shared value for signaling to the capture process that we are ready for the next frame
|
|
# (1 for ready 0 for not ready)
|
|
# (1 for ready 0 for not ready)
|
|
'ready_for_frame': mp.Value('i', 1),
|
|
'ready_for_frame': mp.Value('i', 1),
|
|
@@ -139,17 +138,19 @@ def main():
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
# create shared array for storing the full frame image data
|
|
# create shared array for storing the full frame image data
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
|
|
+ # create shared value for storing the frame_time
|
|
|
|
+ shared_frame_time = mp.Value('d', 0.0)
|
|
# shape current frame so it can be treated as an image
|
|
# shape current frame so it can be treated as an image
|
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
- capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
|
|
|
|
|
|
+ capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, [obj['ready_for_frame'] for obj in shared_memory_objects], frame_shape))
|
|
capture_process.daemon = True
|
|
capture_process.daemon = True
|
|
|
|
|
|
detection_processes = []
|
|
detection_processes = []
|
|
for index, region in enumerate(regions):
|
|
for index, region in enumerate(regions):
|
|
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
|
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
|
shared_memory_objects[index]['output_array'],
|
|
shared_memory_objects[index]['output_array'],
|
|
- shared_memory_objects[index]['frame_time'],
|
|
|
|
|
|
+ shared_frame_time,
|
|
shared_memory_objects[index]['motion_detected'],
|
|
shared_memory_objects[index]['motion_detected'],
|
|
frame_shape,
|
|
frame_shape,
|
|
region['size'], region['x_offset'], region['y_offset']))
|
|
region['size'], region['x_offset'], region['y_offset']))
|
|
@@ -158,8 +159,9 @@ def main():
|
|
|
|
|
|
motion_processes = []
|
|
motion_processes = []
|
|
for index, region in enumerate(regions):
|
|
for index, region in enumerate(regions):
|
|
- motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
|
|
|
- shared_memory_objects[index]['frame_time'],
|
|
|
|
|
|
+ motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
|
|
|
+ shared_frame_time,
|
|
|
|
+ shared_memory_objects[index]['ready_for_frame'],
|
|
shared_memory_objects[index]['motion_detected'],
|
|
shared_memory_objects[index]['motion_detected'],
|
|
frame_shape,
|
|
frame_shape,
|
|
region['size'], region['x_offset'], region['y_offset']))
|
|
region['size'], region['x_offset'], region['y_offset']))
|
|
@@ -197,7 +199,7 @@ def main():
|
|
# convert to RGB for drawing
|
|
# convert to RGB for drawing
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
# draw the bounding boxes on the screen
|
|
# draw the bounding boxes on the screen
|
|
- for obj in DETECTED_OBJECTS:
|
|
|
|
|
|
+ for obj in detected_objects:
|
|
vis_util.draw_bounding_box_on_image_array(frame,
|
|
vis_util.draw_bounding_box_on_image_array(frame,
|
|
obj['ymin'],
|
|
obj['ymin'],
|
|
obj['xmin'],
|
|
obj['xmin'],
|
|
@@ -212,6 +214,12 @@ def main():
|
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
(255,255,255), 2)
|
|
(255,255,255), 2)
|
|
|
|
+
|
|
|
|
+ motion_status = 'No Motion'
|
|
|
|
+ if any(obj['motion_detected'].value == 1 for obj in shared_memory_objects):
|
|
|
|
+ motion_status = 'Motion'
|
|
|
|
+ cv2.putText(frame, motion_status, (10, 20),
|
|
|
|
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
|
# convert back to BGR
|
|
# convert back to BGR
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
# encode the image into a jpg
|
|
# encode the image into a jpg
|
|
@@ -234,7 +242,7 @@ def tonumpyarray(mp_arr):
|
|
|
|
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
# detection_process has consumed the current frame
|
|
# detection_process has consumed the current frame
|
|
-def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
|
|
|
|
|
+def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
|
|
# convert shared memory array into numpy and shape into image array
|
|
# convert shared memory array into numpy and shape into image array
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
@@ -249,16 +257,17 @@ def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
|
# snapshot the time the frame was grabbed
|
|
# snapshot the time the frame was grabbed
|
|
frame_time = datetime.datetime.now()
|
|
frame_time = datetime.datetime.now()
|
|
if ret:
|
|
if ret:
|
|
- # if the detection_process is ready for the next frame decode it
|
|
|
|
|
|
+ # if the anyone is ready for the next frame decode it
|
|
# otherwise skip this frame and move onto the next one
|
|
# otherwise skip this frame and move onto the next one
|
|
- if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
|
|
|
|
|
|
+ if any(flag.value == 1 for flag in ready_for_frame_flags):
|
|
# go ahead and decode the current frame
|
|
# go ahead and decode the current frame
|
|
ret, frame = video.retrieve()
|
|
ret, frame = video.retrieve()
|
|
if ret:
|
|
if ret:
|
|
arr[:] = frame
|
|
arr[:] = frame
|
|
|
|
+ shared_frame_time.value = frame_time.timestamp()
|
|
# signal to the detection_processes by setting the shared_frame_time
|
|
# signal to the detection_processes by setting the shared_frame_time
|
|
- for shared_frame_time in shared_frame_times:
|
|
|
|
- shared_frame_time.value = frame_time.timestamp()
|
|
|
|
|
|
+ for flag in ready_for_frame_flags:
|
|
|
|
+ flag.value = 0
|
|
else:
|
|
else:
|
|
# sleep a little to reduce CPU usage
|
|
# sleep a little to reduce CPU usage
|
|
time.sleep(0.01)
|
|
time.sleep(0.01)
|
|
@@ -325,22 +334,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
|
|
|
|
# do the actual object detection
|
|
# do the actual object detection
|
|
-def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
|
|
|
|
+def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
# shape shared input array into frame for processing
|
|
# shape shared input array into frame for processing
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
no_frames_available = -1
|
|
no_frames_available = -1
|
|
avg_frame = None
|
|
avg_frame = None
|
|
last_motion = -1
|
|
last_motion = -1
|
|
|
|
+ frame_time = 0.0
|
|
while True:
|
|
while True:
|
|
now = datetime.datetime.now().timestamp()
|
|
now = datetime.datetime.now().timestamp()
|
|
# if it has been 30 seconds since the last motion, clear the flag
|
|
# if it has been 30 seconds since the last motion, clear the flag
|
|
if last_motion > 0 and (now - last_motion) > 30:
|
|
if last_motion > 0 and (now - last_motion) > 30:
|
|
last_motion = -1
|
|
last_motion = -1
|
|
shared_motion.value = 0
|
|
shared_motion.value = 0
|
|
- print("motion cleared")
|
|
|
|
# if there isnt a frame ready for processing
|
|
# if there isnt a frame ready for processing
|
|
- if shared_frame_time.value == 0.0:
|
|
|
|
|
|
+ if shared_frame_time.value == frame_time:
|
|
# save the first time there were no frames available
|
|
# save the first time there were no frames available
|
|
if no_frames_available == -1:
|
|
if no_frames_available == -1:
|
|
no_frames_available = now
|
|
no_frames_available = now
|
|
@@ -352,6 +361,8 @@ def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, reg
|
|
else:
|
|
else:
|
|
# rest a little bit to avoid maxing out the CPU
|
|
# rest a little bit to avoid maxing out the CPU
|
|
time.sleep(0.01)
|
|
time.sleep(0.01)
|
|
|
|
+ if ready_for_frame.value == 0:
|
|
|
|
+ ready_for_frame.value = 1
|
|
continue
|
|
continue
|
|
|
|
|
|
# we got a valid frame, so reset the timer
|
|
# we got a valid frame, so reset the timer
|
|
@@ -360,21 +371,19 @@ def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, reg
|
|
# if the frame is more than 0.5 second old, discard it
|
|
# if the frame is more than 0.5 second old, discard it
|
|
if (now - shared_frame_time.value) > 0.5:
|
|
if (now - shared_frame_time.value) > 0.5:
|
|
# signal that we need a new frame
|
|
# signal that we need a new frame
|
|
- shared_frame_time.value = 0.0
|
|
|
|
|
|
+ ready_for_frame.value = 1
|
|
# rest a little bit to avoid maxing out the CPU
|
|
# rest a little bit to avoid maxing out the CPU
|
|
time.sleep(0.01)
|
|
time.sleep(0.01)
|
|
continue
|
|
continue
|
|
|
|
|
|
# make a copy of the cropped frame
|
|
# make a copy of the cropped frame
|
|
- cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
|
|
|
+ cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
|
frame_time = shared_frame_time.value
|
|
frame_time = shared_frame_time.value
|
|
# signal that the frame has been used so a new one will be ready
|
|
# signal that the frame has been used so a new one will be ready
|
|
- shared_frame_time.value = 0.0
|
|
|
|
|
|
+ ready_for_frame.value = 1
|
|
|
|
|
|
# convert to grayscale
|
|
# convert to grayscale
|
|
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
|
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
|
- # convert to uint8
|
|
|
|
- gray = (gray/256).astype('uint8')
|
|
|
|
# apply gaussian blur
|
|
# apply gaussian blur
|
|
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
|
|
|
|
@@ -400,15 +409,14 @@ def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, reg
|
|
if cv2.contourArea(c) < 50:
|
|
if cv2.contourArea(c) < 50:
|
|
continue
|
|
continue
|
|
|
|
|
|
- print("motion_detected")
|
|
|
|
last_motion = now
|
|
last_motion = now
|
|
shared_motion.value = 1
|
|
shared_motion.value = 1
|
|
|
|
|
|
# compute the bounding box for the contour, draw it on the frame,
|
|
# compute the bounding box for the contour, draw it on the frame,
|
|
# and update the text
|
|
# and update the text
|
|
- (x, y, w, h) = cv2.boundingRect(c)
|
|
|
|
- cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
|
|
|
- cv2.imwrite("motion%d.png" % frame_time, cropped_frame)
|
|
|
|
|
|
+ # (x, y, w, h) = cv2.boundingRect(c)
|
|
|
|
+ # cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
|
|
|
+ # cv2.imwrite("motion%d.jpg" % frame_time, cropped_frame)
|
|
if __name__ == '__main__':
|
|
if __name__ == '__main__':
|
|
mp.freeze_support()
|
|
mp.freeze_support()
|
|
main()
|
|
main()
|