|
@@ -173,12 +173,12 @@ def main():
|
|
|
event_queue = mp.Queue()
|
|
|
|
|
|
# create the detection pipes
|
|
|
- detection_pipes = {}
|
|
|
+ out_events = {}
|
|
|
for name in CONFIG['cameras'].keys():
|
|
|
- detection_pipes[name] = mp.Pipe(duplex=False)
|
|
|
+ out_events[name] = mp.Event()
|
|
|
|
|
|
# Start the shared tflite process
|
|
|
- tflite_process = EdgeTPUProcess(result_connections={ key:value[1] for (key,value) in detection_pipes.items() }, tf_device=TENSORFLOW_DEVICE)
|
|
|
+ tflite_process = EdgeTPUProcess(out_events=out_events, tf_device=TENSORFLOW_DEVICE)
|
|
|
|
|
|
# create the camera processes
|
|
|
camera_processes = {}
|
|
@@ -264,7 +264,7 @@ def main():
|
|
|
}
|
|
|
|
|
|
camera_process = mp.Process(target=track_camera, args=(name, config, frame_queue, frame_shape,
|
|
|
- tflite_process.detection_queue, detection_pipes[name][0], tracked_objects_queue, camera_processes[name]['process_fps'],
|
|
|
+ tflite_process.detection_queue, out_events[name], tracked_objects_queue, camera_processes[name]['process_fps'],
|
|
|
camera_processes[name]['detection_fps'],
|
|
|
camera_processes[name]['read_start'], camera_processes[name]['detection_frame'], stop_event))
|
|
|
camera_process.daemon = True
|