|
@@ -43,7 +43,7 @@ categories = label_map_util.convert_label_map_to_categories(label_map, max_num_c
|
|
use_display_name=True)
|
|
use_display_name=True)
|
|
category_index = label_map_util.create_category_index(categories)
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
|
|
-def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
|
|
|
|
|
|
+def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
@@ -62,6 +62,19 @@ def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_o
|
|
[boxes, scores, classes, num_detections],
|
|
[boxes, scores, classes, num_detections],
|
|
feed_dict={image_tensor: image_np_expanded})
|
|
feed_dict={image_tensor: image_np_expanded})
|
|
|
|
|
|
|
|
+ if debug:
|
|
|
|
+ if len([category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.5]) > 0:
|
|
|
|
+ vis_util.visualize_boxes_and_labels_on_image_array(
|
|
|
|
+ cropped_frame,
|
|
|
|
+ np.squeeze(boxes),
|
|
|
|
+ np.squeeze(classes).astype(np.int32),
|
|
|
|
+ np.squeeze(scores),
|
|
|
|
+ category_index,
|
|
|
|
+ use_normalized_coordinates=True,
|
|
|
|
+ line_thickness=4)
|
|
|
|
+ cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
|
|
|
+
|
|
|
|
+
|
|
# build an array of detected objects
|
|
# build an array of detected objects
|
|
objects = []
|
|
objects = []
|
|
for index, value in enumerate(classes[0]):
|
|
for index, value in enumerate(classes[0]):
|
|
@@ -212,7 +225,8 @@ def main():
|
|
region['motion_detected'],
|
|
region['motion_detected'],
|
|
frame_shape,
|
|
frame_shape,
|
|
region['size'], region['x_offset'], region['y_offset'],
|
|
region['size'], region['x_offset'], region['y_offset'],
|
|
- region['min_object_size']))
|
|
|
|
|
|
+ region['min_object_size'],
|
|
|
|
+ True))
|
|
motion_process.daemon = True
|
|
motion_process.daemon = True
|
|
motion_processes.append(motion_process)
|
|
motion_processes.append(motion_process)
|
|
|
|
|
|
@@ -330,6 +344,7 @@ def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_sha
|
|
|
|
|
|
# do the actual object detection
|
|
# do the actual object detection
|
|
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
|
|
+ debug = True
|
|
# shape shared input array into frame for processing
|
|
# shape shared input array into frame for processing
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
@@ -383,12 +398,12 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
# convert to RGB
|
|
# convert to RGB
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
# do the object detection
|
|
# do the object detection
|
|
- objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
|
|
|
|
|
|
+ objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, True)
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
|
|
|
|
# do the actual motion detection
|
|
# do the actual motion detection
|
|
-def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
|
|
|
|
|
|
+def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
|
|
# shape shared input array into frame for processing
|
|
# shape shared input array into frame for processing
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
@@ -463,6 +478,10 @@ def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion,
|
|
# if the contour is big enough, count it as motion
|
|
# if the contour is big enough, count it as motion
|
|
contour_area = cv2.contourArea(c)
|
|
contour_area = cv2.contourArea(c)
|
|
if contour_area > min_motion_area:
|
|
if contour_area > min_motion_area:
|
|
|
|
+ if debug:
|
|
|
|
+ (x, y, w, h) = cv2.boundingRect(c)
|
|
|
|
+ cv2.rectangle(thresh, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
|
|
|
+
|
|
motion_frames += 1
|
|
motion_frames += 1
|
|
# if there have been enough consecutive motion frames, report motion
|
|
# if there have been enough consecutive motion frames, report motion
|
|
if motion_frames >= 3:
|
|
if motion_frames >= 3:
|
|
@@ -470,6 +489,8 @@ def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion,
|
|
last_motion = now
|
|
last_motion = now
|
|
break
|
|
break
|
|
motion_frames = 0
|
|
motion_frames = 0
|
|
|
|
+ if debug and motion_frames > 0:
|
|
|
|
+ cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), thresh)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if __name__ == '__main__':
|
|
mp.freeze_support()
|
|
mp.freeze_support()
|