|
@@ -19,48 +19,64 @@ def ReadLabelFile(file_path):
|
|
ret[int(pair[0])] = pair[1].strip()
|
|
ret[int(pair[0])] = pair[1].strip()
|
|
return ret
|
|
return ret
|
|
|
|
|
|
-def detect_objects(prepped_frame_array, prepped_frame_time, prepped_frame_lock,
|
|
|
|
- prepped_frame_ready, prepped_frame_box, object_queue, debug):
|
|
|
|
- prepped_frame_np = tonumpyarray(prepped_frame_array)
|
|
|
|
|
|
+def detect_objects(prepped_frame_arrays, prepped_frame_times, prepped_frame_locks,
|
|
|
|
+ prepped_frame_boxes, motion_changed, motion_regions, object_queue, debug):
|
|
|
|
+ prepped_frame_nps = [tonumpyarray(prepped_frame_array) for prepped_frame_array in prepped_frame_arrays]
|
|
# Load the edgetpu engine and labels
|
|
# Load the edgetpu engine and labels
|
|
engine = DetectionEngine(PATH_TO_CKPT)
|
|
engine = DetectionEngine(PATH_TO_CKPT)
|
|
labels = ReadLabelFile(PATH_TO_LABELS)
|
|
labels = ReadLabelFile(PATH_TO_LABELS)
|
|
|
|
|
|
frame_time = 0.0
|
|
frame_time = 0.0
|
|
- region_box = [0,0,0,0]
|
|
|
|
|
|
+ region_box = [0,0,0]
|
|
while True:
|
|
while True:
|
|
- with prepped_frame_ready:
|
|
|
|
- prepped_frame_ready.wait()
|
|
|
|
|
|
+ # while there is motion
|
|
|
|
+ while len([r for r in motion_regions if r.is_set()]) > 0:
|
|
|
|
|
|
- # make a copy of the cropped frame
|
|
|
|
- with prepped_frame_lock:
|
|
|
|
- prepped_frame_copy = prepped_frame_np.copy()
|
|
|
|
- frame_time = prepped_frame_time.value
|
|
|
|
- region_box[:] = prepped_frame_box
|
|
|
|
|
|
+ # loop over all the motion regions and look for objects
|
|
|
|
+ for i, motion_region in enumerate(motion_regions):
|
|
|
|
+ # skip the region if no motion
|
|
|
|
+ if not motion_region.is_set():
|
|
|
|
+ continue
|
|
|
|
|
|
- # Actual detection.
|
|
|
|
- objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
|
- # print(engine.get_inference_time())
|
|
|
|
- # put detected objects in the queue
|
|
|
|
- if objects:
|
|
|
|
- # assumes square
|
|
|
|
- region_size = region_box[2]-region_box[0]
|
|
|
|
- for obj in objects:
|
|
|
|
- box = obj.bounding_box.flatten().tolist()
|
|
|
|
- object_queue.put({
|
|
|
|
- 'frame_time': frame_time,
|
|
|
|
- 'name': str(labels[obj.label_id]),
|
|
|
|
- 'score': float(obj.score),
|
|
|
|
- 'xmin': int((box[0] * region_size) + region_box[0]),
|
|
|
|
- 'ymin': int((box[1] * region_size) + region_box[1]),
|
|
|
|
- 'xmax': int((box[2] * region_size) + region_box[0]),
|
|
|
|
- 'ymax': int((box[3] * region_size) + region_box[1])
|
|
|
|
- })
|
|
|
|
|
|
+ # make a copy of the cropped frame
|
|
|
|
+ with prepped_frame_locks[i]:
|
|
|
|
+ prepped_frame_copy = prepped_frame_nps[i].copy()
|
|
|
|
+ frame_time = prepped_frame_times[i].value
|
|
|
|
+ region_box[:] = prepped_frame_boxes[i]
|
|
|
|
+
|
|
|
|
+ # Actual detection.
|
|
|
|
+ objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
|
|
|
+ # print(engine.get_inference_time())
|
|
|
|
+ # put detected objects in the queue
|
|
|
|
+ if objects:
|
|
|
|
+ for obj in objects:
|
|
|
|
+ box = obj.bounding_box.flatten().tolist()
|
|
|
|
+ object_queue.put({
|
|
|
|
+ 'frame_time': frame_time,
|
|
|
|
+ 'name': str(labels[obj.label_id]),
|
|
|
|
+ 'score': float(obj.score),
|
|
|
|
+ 'xmin': int((box[0] * region_box[0]) + region_box[1]),
|
|
|
|
+ 'ymin': int((box[1] * region_box[0]) + region_box[2]),
|
|
|
|
+ 'xmax': int((box[2] * region_box[0]) + region_box[1]),
|
|
|
|
+ 'ymax': int((box[3] * region_box[0]) + region_box[2])
|
|
|
|
+ })
|
|
|
|
+ else:
|
|
|
|
+ object_queue.put({
|
|
|
|
+ 'frame_time': frame_time,
|
|
|
|
+ 'name': 'dummy',
|
|
|
|
+ 'score': 0.99,
|
|
|
|
+ 'xmin': int(0 + region_box[1]),
|
|
|
|
+ 'ymin': int(0 + region_box[2]),
|
|
|
|
+ 'xmax': int(10 + region_box[1]),
|
|
|
|
+ 'ymax': int(10 + region_box[2])
|
|
|
|
+ })
|
|
|
|
+ # wait for the global motion flag to change
|
|
|
|
+ with motion_changed:
|
|
|
|
+ motion_changed.wait()
|
|
|
|
|
|
def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
|
|
def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock, frame_ready,
|
|
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
- prepped_frame_array, prepped_frame_time, prepped_frame_ready, prepped_frame_lock,
|
|
|
|
- prepped_frame_box):
|
|
|
|
|
|
+ prepped_frame_array, prepped_frame_time, prepped_frame_lock):
|
|
# shape shared input array into frame for processing
|
|
# shape shared input array into frame for processing
|
|
shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
|
|
shared_whole_frame = tonumpyarray(shared_whole_frame_array).reshape(frame_shape)
|
|
|
|
|
|
@@ -94,9 +110,4 @@ def prep_for_detection(shared_whole_frame_array, shared_frame_time, frame_lock,
|
|
# copy the prepped frame to the shared output array
|
|
# copy the prepped frame to the shared output array
|
|
with prepped_frame_lock:
|
|
with prepped_frame_lock:
|
|
shared_prepped_frame[:] = frame_expanded
|
|
shared_prepped_frame[:] = frame_expanded
|
|
- prepped_frame_time = frame_time
|
|
|
|
- prepped_frame_box[:] = [region_x_offset, region_y_offset, region_x_offset+region_size, region_y_offset+region_size]
|
|
|
|
-
|
|
|
|
- # signal that a prepped frame is ready
|
|
|
|
- with prepped_frame_ready:
|
|
|
|
- prepped_frame_ready.notify_all()
|
|
|
|
|
|
+ prepped_frame_time.value = frame_time
|