|
@@ -5,6 +5,7 @@ import datetime
|
|
|
import ctypes
|
|
|
import logging
|
|
|
import multiprocessing as mp
|
|
|
+import threading
|
|
|
from contextlib import closing
|
|
|
import numpy as np
|
|
|
import tensorflow as tf
|
|
@@ -23,15 +24,20 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
|
|
# TODO: make dynamic?
|
|
|
NUM_CLASSES = 90
|
|
|
|
|
|
+#REGIONS = "600,0,380:600,600,380:600,1200,380"
|
|
|
+REGIONS = os.getenv('REGIONS')
|
|
|
+
|
|
|
+DETECTED_OBJECTS = []
|
|
|
+
|
|
|
# Loading label map
|
|
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
|
|
use_display_name=True)
|
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
|
|
-def detect_objects(image_np, sess, detection_graph):
|
|
|
+def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
|
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
|
- image_np_expanded = np.expand_dims(image_np, axis=0)
|
|
|
+ image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
|
|
|
|
# Each box represents a part of the image where a particular object was detected.
|
|
@@ -51,25 +57,55 @@ def detect_objects(image_np, sess, detection_graph):
|
|
|
# build an array of detected objects
|
|
|
objects = []
|
|
|
for index, value in enumerate(classes[0]):
|
|
|
- object_dict = {}
|
|
|
- if scores[0, index] > 0.5:
|
|
|
- object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
|
|
|
- scores[0, index]
|
|
|
- objects.append(object_dict)
|
|
|
-
|
|
|
- # draw boxes for detected objects on image
|
|
|
- vis_util.visualize_boxes_and_labels_on_image_array(
|
|
|
- image_np,
|
|
|
- np.squeeze(boxes),
|
|
|
- np.squeeze(classes).astype(np.int32),
|
|
|
- np.squeeze(scores),
|
|
|
- category_index,
|
|
|
- use_normalized_coordinates=True,
|
|
|
- line_thickness=4)
|
|
|
-
|
|
|
- return objects, image_np
|
|
|
+ score = scores[0, index]
|
|
|
+ if score > 0.1:
|
|
|
+ box = boxes[0, index].tolist()
|
|
|
+ box[0] = (box[0] * region_size) + region_y_offset
|
|
|
+ box[1] = (box[1] * region_size) + region_x_offset
|
|
|
+ box[2] = (box[2] * region_size) + region_y_offset
|
|
|
+ box[3] = (box[3] * region_size) + region_x_offset
|
|
|
+ objects += [value, scores[0, index]] + box
|
|
|
+ # only get the first 10 objects
|
|
|
+ if len(objects) == 60:
|
|
|
+ break
|
|
|
+
|
|
|
+ return objects
|
|
|
+
|
|
|
+class ObjectParser(threading.Thread):
|
|
|
+ def __init__(self, object_arrays):
|
|
|
+ threading.Thread.__init__(self)
|
|
|
+ self._object_arrays = object_arrays
|
|
|
+
|
|
|
+ def run(self):
|
|
|
+ global DETECTED_OBJECTS
|
|
|
+ while True:
|
|
|
+ detected_objects = []
|
|
|
+ for object_array in self._object_arrays:
|
|
|
+ object_index = 0
|
|
|
+ while(object_index < 60 and object_array[object_index] > 0):
|
|
|
+ object_class = object_array[object_index]
|
|
|
+ detected_objects.append({
|
|
|
+ 'name': str(category_index.get(object_class).get('name')),
|
|
|
+ 'score': object_array[object_index+1],
|
|
|
+ 'ymin': int(object_array[object_index+2]),
|
|
|
+ 'xmin': int(object_array[object_index+3]),
|
|
|
+ 'ymax': int(object_array[object_index+4]),
|
|
|
+ 'xmax': int(object_array[object_index+5])
|
|
|
+ })
|
|
|
+ object_index += 6
|
|
|
+ DETECTED_OBJECTS = detected_objects
|
|
|
+ time.sleep(0.01)
|
|
|
|
|
|
def main():
|
|
|
+ # Parse selected regions
|
|
|
+ regions = []
|
|
|
+ for region_string in REGIONS.split(':'):
|
|
|
+ region_parts = region_string.split(',')
|
|
|
+ regions.append({
|
|
|
+ 'size': int(region_parts[0]),
|
|
|
+ 'x_offset': int(region_parts[1]),
|
|
|
+ 'y_offset': int(region_parts[2])
|
|
|
+ })
|
|
|
# capture a single frame and check the frame shape so the correct array
|
|
|
# size can be allocated in memory
|
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
@@ -81,31 +117,45 @@ def main():
|
|
|
exit(1)
|
|
|
video.release()
|
|
|
|
|
|
- # create shared value for storing the time the frame was captured
|
|
|
- # note: this must be a double even though the value you are storing
|
|
|
- # is a float. otherwise it stops updating the value in shared
|
|
|
- # memory. probably something to do with the size of the memory block
|
|
|
- shared_frame_time = mp.Value('d', 0.0)
|
|
|
+ shared_memory_objects = []
|
|
|
+ for region in regions:
|
|
|
+ shared_memory_objects.append({
|
|
|
+ # create shared value for storing the time the frame was captured
|
|
|
+ # note: this must be a double even though the value you are storing
|
|
|
+ # is a float. otherwise it stops updating the value in shared
|
|
|
+ # memory. probably something to do with the size of the memory block
|
|
|
+ 'frame_time': mp.Value('d', 0.0),
|
|
|
+ # create shared array for storing 10 detected objects
|
|
|
+ 'output_array': mp.Array(ctypes.c_double, 6*10)
|
|
|
+ })
|
|
|
+
|
|
|
# compute the flattened array length from the array shape
|
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
|
- # create shared array for passing the image data from capture to detect_objects
|
|
|
+ # create shared array for storing the full frame image data
|
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
|
- # create shared array for passing the image data from detect_objects to flask
|
|
|
- shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
|
- # create a numpy array with the image shape from the shared memory array
|
|
|
- # this is used by flask to output an mjpeg stream
|
|
|
- frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
|
+ # shape current frame so it can be treated as an image
|
|
|
+ frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
|
- capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
|
|
|
+ capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
|
|
|
capture_process.daemon = True
|
|
|
|
|
|
- detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape))
|
|
|
- detection_process.daemon = True
|
|
|
+ detection_processes = []
|
|
|
+ for index, region in enumerate(regions):
|
|
|
+ detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
|
|
+ shared_memory_objects[index]['output_array'],
|
|
|
+ shared_memory_objects[index]['frame_time'], frame_shape,
|
|
|
+ region['size'], region['x_offset'], region['y_offset']))
|
|
|
+ detection_process.daemon = True
|
|
|
+ detection_processes.append(detection_process)
|
|
|
+
|
|
|
+ object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
|
|
+ object_parser.start()
|
|
|
|
|
|
capture_process.start()
|
|
|
print("capture_process pid ", capture_process.pid)
|
|
|
- detection_process.start()
|
|
|
- print("detection_process pid ", detection_process.pid)
|
|
|
+ for detection_process in detection_processes:
|
|
|
+ detection_process.start()
|
|
|
+ print("detection_process pid ", detection_process.pid)
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
@@ -115,20 +165,45 @@ def main():
|
|
|
return Response(imagestream(),
|
|
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
def imagestream():
|
|
|
+ global DETECTED_OBJECTS
|
|
|
while True:
|
|
|
# max out at 5 FPS
|
|
|
time.sleep(0.2)
|
|
|
+ # make a copy of the current detected objects
|
|
|
+ detected_objects = DETECTED_OBJECTS.copy()
|
|
|
+ # make a copy of the current frame
|
|
|
+ frame = frame_arr.copy()
|
|
|
+ # convert to RGB for drawing
|
|
|
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ # draw the bounding boxes on the screen
|
|
|
+ for obj in DETECTED_OBJECTS:
|
|
|
+ vis_util.draw_bounding_box_on_image_array(frame,
|
|
|
+ obj['ymin'],
|
|
|
+ obj['xmin'],
|
|
|
+ obj['ymax'],
|
|
|
+ obj['xmax'],
|
|
|
+ color='red',
|
|
|
+ thickness=2,
|
|
|
+ display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
|
+ use_normalized_coordinates=False)
|
|
|
+
|
|
|
+ for region in regions:
|
|
|
+ cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
+ (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
+ (255,255,255), 2)
|
|
|
# convert back to BGR
|
|
|
- frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
|
|
|
+ frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
# encode the image into a jpg
|
|
|
- ret, jpg = cv2.imencode('.jpg', frame_bgr)
|
|
|
+ ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
yield (b'--frame\r\n'
|
|
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
|
|
app.run(host='0.0.0.0', debug=False)
|
|
|
|
|
|
capture_process.join()
|
|
|
- detection_process.join()
|
|
|
+ for detection_process in detection_processes:
|
|
|
+ detection_process.join()
|
|
|
+ object_parser.join()
|
|
|
|
|
|
# convert shared memory array into numpy array
|
|
|
def tonumpyarray(mp_arr):
|
|
@@ -136,7 +211,7 @@ def tonumpyarray(mp_arr):
|
|
|
|
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
|
# detection_process has consumed the current frame
|
|
|
-def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
|
|
+def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
|
|
# convert shared memory array into numpy and shape into image array
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
|
@@ -153,23 +228,24 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
|
|
if ret:
|
|
|
# if the detection_process is ready for the next frame decode it
|
|
|
# otherwise skip this frame and move onto the next one
|
|
|
- if shared_frame_time.value == 0.0:
|
|
|
+ if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
|
|
|
# go ahead and decode the current frame
|
|
|
ret, frame = video.retrieve()
|
|
|
if ret:
|
|
|
- # copy the frame into the numpy array
|
|
|
arr[:] = frame
|
|
|
- # signal to the detection_process by setting the shared_frame_time
|
|
|
- shared_frame_time.value = frame_time.timestamp()
|
|
|
+ # signal to the detection_processes by setting the shared_frame_time
|
|
|
+ for shared_frame_time in shared_frame_times:
|
|
|
+ shared_frame_time.value = frame_time.timestamp()
|
|
|
+ else:
|
|
|
+ # sleep a little to reduce CPU usage
|
|
|
+ time.sleep(0.01)
|
|
|
|
|
|
video.release()
|
|
|
|
|
|
# do the actual object detection
|
|
|
-def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape):
|
|
|
+def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape, region_size, region_x_offset, region_y_offset):
|
|
|
# shape shared input array into frame for processing
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
- # shape shared output array into frame so it can be copied into
|
|
|
- output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
|
|
|
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
|
|
detection_graph = tf.Graph()
|
|
@@ -193,6 +269,9 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
|
|
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
|
|
time.sleep(1)
|
|
|
print("sleeping because no frames have been available in a while")
|
|
|
+ else:
|
|
|
+ # rest a little bit to avoid maxing out the CPU
|
|
|
+ time.sleep(0.01)
|
|
|
continue
|
|
|
|
|
|
# we got a valid frame, so reset the timer
|
|
@@ -202,22 +281,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
|
|
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
|
|
# signal that we need a new frame
|
|
|
shared_frame_time.value = 0.0
|
|
|
+ # rest a little bit to avoid maxing out the CPU
|
|
|
+ time.sleep(0.01)
|
|
|
continue
|
|
|
|
|
|
- # make a copy of the frame
|
|
|
- frame = arr.copy()
|
|
|
+ # make a copy of the cropped frame
|
|
|
+ cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
|
frame_time = shared_frame_time.value
|
|
|
# signal that the frame has been used so a new one will be ready
|
|
|
shared_frame_time.value = 0.0
|
|
|
|
|
|
# convert to RGB
|
|
|
- frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
+ cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
|
# do the object detection
|
|
|
- objects, frame_overlay = detect_objects(frame_rgb, sess, detection_graph)
|
|
|
- # copy the output frame with the bounding boxes to the output array
|
|
|
- output_arr[:] = frame_overlay
|
|
|
- if(len(objects) > 0):
|
|
|
- print(objects)
|
|
|
+ objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
|
|
|
+ # copy the detected objects to the output array, filling the array when needed
|
|
|
+ shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
mp.freeze_support()
|