|
@@ -387,7 +387,7 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
|
|
|
|
-# do the actual object detection
|
|
|
+# do the actual motion detection
|
|
|
def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
|
|
|
# shape shared input array into frame for processing
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
@@ -398,8 +398,8 @@ def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion,
|
|
|
frame_time = 0.0
|
|
|
while True:
|
|
|
now = datetime.datetime.now().timestamp()
|
|
|
- # if it has been 30 seconds since the last motion, clear the flag
|
|
|
- if last_motion > 0 and (now - last_motion) > 30:
|
|
|
+ # if it has been long enough since the last motion, clear the flag
|
|
|
+ if last_motion > 0 and (now - last_motion) > 5:
|
|
|
last_motion = -1
|
|
|
shared_motion.value = 0
|
|
|
# if there isnt a frame ready for processing
|