|
@@ -27,10 +27,34 @@ def filter_false_positives(event):
|
|
|
return True
|
|
|
return False
|
|
|
|
|
|
+def zone_filtered(obj, object_config):
|
|
|
+ object_name = obj['label']
|
|
|
+ object_filters = object_config.get('filters', {})
|
|
|
+
|
|
|
+ if object_name in object_filters:
|
|
|
+ obj_settings = object_filters[object_name]
|
|
|
+
|
|
|
+ # if the min area is larger than the
|
|
|
+ # detected object, don't add it to detected objects
|
|
|
+ if obj_settings.get('min_area',-1) > obj['area']:
|
|
|
+ return True
|
|
|
+
|
|
|
+ # if the detected object is larger than the
|
|
|
+ # max area, don't add it to detected objects
|
|
|
+ if obj_settings.get('max_area', 24000000) < obj['area']:
|
|
|
+ return True
|
|
|
+
|
|
|
+ # if the score is lower than the threshold, skip
|
|
|
+ if obj_settings.get('threshold', 0) > obj['score']:
|
|
|
+ return True
|
|
|
+
|
|
|
+ return False
|
|
|
+
|
|
|
class TrackedObjectProcessor(threading.Thread):
|
|
|
- def __init__(self, config, client, topic_prefix, tracked_objects_queue, event_queue):
|
|
|
+ def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue):
|
|
|
threading.Thread.__init__(self)
|
|
|
- self.config = config
|
|
|
+ self.camera_config = camera_config
|
|
|
+ self.zone_config = zone_config
|
|
|
self.client = client
|
|
|
self.topic_prefix = topic_prefix
|
|
|
self.tracked_objects_queue = tracked_objects_queue
|
|
@@ -43,6 +67,28 @@ class TrackedObjectProcessor(threading.Thread):
|
|
|
'current_frame_time': 0.0,
|
|
|
'object_id': None
|
|
|
})
|
|
|
+ self.zone_data = defaultdict(lambda: {
|
|
|
+ 'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
|
|
+ 'contours': {}
|
|
|
+ })
|
|
|
+
|
|
|
+ # create zone contours
|
|
|
+ for name, config in zone_config.items():
|
|
|
+ for camera, camera_zone_config in config.items():
|
|
|
+ coordinates = camera_zone_config['coordinates']
|
|
|
+ if isinstance(coordinates, list):
|
|
|
+ self.zone_data[name]['contours'][camera] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
|
|
|
+ elif isinstance(coordinates, str):
|
|
|
+ points = coordinates.split(',')
|
|
|
+ self.zone_data[name]['contours'][camera] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
|
|
+ else:
|
|
|
+ print(f"Unable to parse zone coordinates for {name} - {camera}")
|
|
|
+
|
|
|
+ # set colors for zones
|
|
|
+ colors = plt.cm.get_cmap('tab10', len(self.zone_data.keys()))
|
|
|
+ for i, zone in enumerate(self.zone_data.values()):
|
|
|
+ zone['color'] = tuple(int(round(255 * c)) for c in colors(i)[:3])
|
|
|
+
|
|
|
self.plasma_client = PlasmaManager()
|
|
|
|
|
|
def get_best(self, camera, label):
|
|
@@ -58,7 +104,7 @@ class TrackedObjectProcessor(threading.Thread):
|
|
|
while True:
|
|
|
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get()
|
|
|
|
|
|
- config = self.config[camera]
|
|
|
+ camera_config = self.camera_config[camera]
|
|
|
best_objects = self.camera_data[camera]['best_objects']
|
|
|
current_object_status = self.camera_data[camera]['object_status']
|
|
|
tracked_objects = self.camera_data[camera]['tracked_objects']
|
|
@@ -89,6 +135,17 @@ class TrackedObjectProcessor(threading.Thread):
|
|
|
|
|
|
self.camera_data[camera]['current_frame_time'] = frame_time
|
|
|
|
|
|
+ # build a dict of objects in each zone for current camera
|
|
|
+ current_objects_in_zones = defaultdict(lambda: [])
|
|
|
+ for obj in tracked_objects.values():
|
|
|
+ bottom_center = (obj['centroid'][0], obj['box'][3])
|
|
|
+ # check each zone
|
|
|
+ for name, zone in self.zone_data.items():
|
|
|
+ # check each camera with a contour for the zone
|
|
|
+ for camera, contour in zone['contours'].items():
|
|
|
+ if cv2.pointPolygonTest(contour, bottom_center, False) >= 0 and not zone_filtered(obj, self.zone_config[name][camera].get('filters', {})):
|
|
|
+ current_objects_in_zones[name].append(obj['label'])
|
|
|
+
|
|
|
###
|
|
|
# Draw tracked objects on the frame
|
|
|
###
|
|
@@ -111,10 +168,16 @@ class TrackedObjectProcessor(threading.Thread):
|
|
|
region = obj['region']
|
|
|
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
|
|
|
|
|
- if config['snapshots']['show_timestamp']:
|
|
|
+ if camera_config['snapshots']['show_timestamp']:
|
|
|
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
|
|
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
|
|
|
|
+ if camera_config['snapshots']['draw_zones']:
|
|
|
+ for name, zone in self.zone_data.items():
|
|
|
+ thickness = 2 if len(current_objects_in_zones[name]) == 0 else 8
|
|
|
+ if camera in zone['contours']:
|
|
|
+ cv2.drawContours(current_frame, [zone['contours'][camera]], -1, zone['color'], thickness)
|
|
|
+
|
|
|
###
|
|
|
# Set the current frame
|
|
|
###
|
|
@@ -152,7 +215,26 @@ class TrackedObjectProcessor(threading.Thread):
|
|
|
###
|
|
|
# Report over MQTT
|
|
|
###
|
|
|
- # count objects by type
|
|
|
+
|
|
|
+ # get the zones that are relevant for this camera
|
|
|
+ relevant_zones = [zone for zone, config in self.zone_config.items() if camera in config]
|
|
|
+ # for each zone
|
|
|
+ for zone in relevant_zones:
|
|
|
+ # create the set of labels in the current frame and previously reported
|
|
|
+ labels_for_zone = set(current_objects_in_zones[zone] + list(self.zone_data[zone]['object_status'][camera].keys()))
|
|
|
+ # for each label
|
|
|
+ for label in labels_for_zone:
|
|
|
+ # compute the current 'ON' vs 'OFF' status by checking if any camera sees the object in the zone
|
|
|
+ previous_state = any([camera[label] == 'ON' for camera in self.zone_data[zone]['object_status'].values()])
|
|
|
+ self.zone_data[zone]['object_status'][camera][label] = 'ON' if label in current_objects_in_zones[zone] else 'OFF'
|
|
|
+ new_state = any([camera[label] == 'ON' for camera in self.zone_data[zone]['object_status'].values()])
|
|
|
+ # if the value is changing, send over MQTT
|
|
|
+ if previous_state == False and new_state == True:
|
|
|
+ self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
|
|
|
+ elif previous_state == True and new_state == False:
|
|
|
+ self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
|
|
|
+
|
|
|
+ # count by type
|
|
|
obj_counter = Counter()
|
|
|
for obj in tracked_objects.values():
|
|
|
obj_counter[obj['label']] += 1
|